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ABSTRACT

This paper studies endogenous risk-taking by embedding a concern for relative status into
an otherwise conventional model of economic growth. We prove that if the intertemporal
production function is strictly concave, any Markov perfect equilibrium must converge to
a unique steady state in which there is recurrent endogenous risk-taking. (The role played
by concavity is clarified by considering a special case in which the the production function
is instead convex, in which there is no persistent risk-taking.) The steady state is fully
characterized. It displays features that are consistent with the stylized facts that individuals
both insure downside risk and gamble over upside risk, and it generates similar patterns
of risk-taking and avoidance across environments with quite different overall wealth levels.
Endogenous risk-taking here is generally Pareto-inefficient. In summary, a concern for
relative status implies that persistent and inefficient risk-taking hinder the attainment of full
equality.
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1. INTRODUCTION

This paper seeks to explain the coexistence of risk-taking and risk-averse behavior when
individuals derive utility from status. Inspired by Veblen (1899) and Duesenberry (1949),
we embed a concern for relative payoffs into an otherwise conventional model of economic
growth.! Individuals care about relative as well as absolute consumption. We presume that
all fair gambles are available: there is a competitive industry that can supply such gambles at
zero profit. We study the intertemporal equilibrium of such a model. The theory we develop
provides an account of endogenous risk-taking, even when there is no intrinsic uncertainty.

The main idea is simple. A deterministic equilibrium of our model induces convergence
across dynasties, as in the Solow or Ramsey parables. Such convergence generates large gains
in relative status from small increases in consumption. Hence the urge to take risks becomes
irresistibly strong, destroying the presumption that the equilibrium is deterministic to begin
with. We describe the dynamic equilibrium with risk-taking. Our steady state equilibrium
generates individual insurance against substantial downside risk and gambling over an
intermediate range of outcomes. These turn out to explain the stylized facts that motivated
a classic contribution by Friedman and Savage (1948), to which we return below.

Our emphasis on dynamics clarifies that the origin of endogenous risk-taking is the
convergence of wealth induced by a strictly concave intertemporal production function. We
underline this reasoning by briefly studying the case of a convex production function. In this
case, when utility depends on status alone, we demonstrate the existence of an equilibrium
with no risk-taking. That equilibrium comes about precisely because the convexity of the
production function prevents convergence.

The endogenous risk-taking that arises in equilibrium is Pareto-inefficient because status
involves a consumption externality. If risk-taking creates a gain in status, for example, this
gain must be counterbalanced by a loss to other parties. It is not surprising then that the
equilibrium gambling here is Pareto-inefficient— indeed this is true despite the possibility
that particular forms of gambling may be Pareto-efficient.

Three strands of the literature inform our approach. Friedman and Savage (1948) reconciled
the simultaneous demand for insurance and lotteries by arguing that the former alleviates
downsiderisk and the latter exploits upside risk. They studied a von Neumann-Morgenstern
utility function that is first concave, then convex, and finally again concave. This model has
been criticized, both for its ad hoc specification of the function as well as its dependence on
absolute wealth alone. The latter generates marked shifts in behavior with the overall growth
of wealth, as individuals display an attenuated appetite for insurance against downside risk.”
Our main result delivers the Friedman-Savage findings with no assumption at all on the
curvature of utility in status. Moreover, the concern with relative status creates similar
patterns of risk-taking and risk-avoidance across environments with varying wealth levels.

'Frank (1985), Easterlin (2002), Scitovsky (1976), and Sen (1973), among many others, emphasize relative status;
for empirical studies., see, e.g., Clark and Oswald (1996), and Dynan and Ravina (2007). There is a small and
growing literature dealing with dynamic models that studies how a concern with status influences savings; see,
e.g., Corneo and Jeanne (2001), Hopkins and Kornienko (2006), Arrow and Dasgupta (2009) and Xia (2009).
Moreover, as discussed by Friedman (1953), there should be a distinct tendency for all individuals in the convex
region and beyond to gamble their way to more extreme final wealth levels.
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Second, we build on Robson (1992), who modifies Friedman-Savage utility to depend on
both relative as well as absolute wealth.® If utility is concave in wealth but convex in status,
it is not hard to generate a concave-convex-concave shape for utility as a function of wealth.
This construction can be immune to proportional wealth scaling. There is no presumption
in favor of Pareto-efficiency — there may be too much gambling, or perhaps too little of it.*

The main limitation of such static models is that they require particular assumptions on the
curvature of utility in status, as well as on the shape of the wealth distribution, in order
to get the requisite concave-convex-concave utility. In the dynamic model we consider,
no corresponding assumptions are required. The results are driven by the inevitability of
convergence in any deterministic equilibrium, and the resulting need for gambling in order
to spread equilibrium status out within any generation.

Our model is also related to a literature that studies a breakdown of convergence induced
by “symmetry-breaking”: individuals take different actions whenever society-wide distri-
butions are highly equal. One approach in this strand emphasizes the endogenous diversity
of occupational choices at identical or near-identical wealth levels, leading to inequality.’
Another involves the use of income distributions to create endogenous “reference points”
with high marginal gains and losses in the departure of wealth from the reference points.
Then perfect equality will be destabilized by individuals accumulating capital to different
degrees.’ Risk-taking plays an analogous role here.

Section 2 describes the basic setup. Section 3 studies the special case of a convex production
function. Proposition 1 shows that a simple deterministic equilibrium exists, and it is
unique in a broad class of strategies. Section 4 studies the central model. Propositions
2 and 3 characterize a unique steady state, in which all dynasties bequeath the same
amount, and start each generation with identical wealth. However, endogenous risk-taking
induces a nondegenerate distribution of lifetime consumption. Proposition 4 shows that
an intertemporal equilibrium must exist, and that any equilibrium path from a positive
initial wealth distribution must converge to the unique steady state. Section 5 studies
some properties of equilibrium, among them, its inefficiency (Proposition 5). Section 6
sketches two extensions of the central model. First, in line with Veblen, we observe that the
equilibrium in this model of consumption-based status can be reinterpreted as a separating
equilibrium in which consumption signals unobservable wealth. Secondly, we consider how
the introduction of uninsurable productive risk might improve the realism of the model, by
creating dispersion in wealth and consumption. Section 7 summarizes and concludes.

3Friedman and Savage actually proposed a rationale of concave-convex-concave utility that involves relative
concerns. They sketched a model with two classes where changes in wealth within either class led to decreasing
marginal utility, but changes that promoted an individual from the lower class to the upper class led to increasing
marginal utility.

“In contrast, the Pareto-efficiency of the Friedman-Savage model is the main point in Friedman (1953). In this
context, we note that Becker, Murphy and Werning (2005) also consider the incentive to gamble in a static model
with rank-dependent status. They extend Robson (1992) in a number of ways, perhaps most significantly to a
case in which status is a separate good that can be bought and sold. This assumption restores Pareto-efficiency.
On a different note, Hopkins (2010) reexamines the consequences of greater inequality. If there is greater
inequality in the exogenous way the status good is distributed, this may lead to more gambling, in contrast to
the effect of greater inequality of the initial wealth distribution.

>See, e.g., Freeman (1996), Mookherjee and Ray (2003), Matsuyama (2004) and Ray (2006)

®Genicot and Ray (2010) develop this idea.



2. Tue Basic SETup

2.1. Feasible Set. There is a continuum of dynasties of measure one. Each dynasty has
initial wealth w, distributed according to the cumulative distribution function (cdf) G.

Individuals consume and invest (or bequeath) in every period; each date represents a
lifetime. An individual can transform part or all of starting wealth w; into any gamble
with that mean. The realized outcome is then divided between consumption c; and k;.
Capital produces fresh wealth for the next generation according to the production function

(1) wi+1 = flke),

We assume throughout that f is strictly increasing and continuously differentiable (C!) in
k, with f(0) > 0. For the special model considered in Section 3, we ask in addition that f
be convex. Later, for the more plausible central model of Section 4, we go the other way to
require that f be strictly concave, and a little more.

Under our intergenerational interpretation, curvature in f is reasonable. The capital stock
is an intergenerational bequest. As in Becker and Tomes (1979) and Loury (1981), the
“production function” includes human capital accumulation, and — with imperfect capital
markets for education — it has household-specific curvature rather than being fully linear
as in the case of competitive, complete markets.

2.2. Utility and Status. Each individual has a utility function u(c,s), which depends on
consumption and status. Status is the percentage of the population who are strictly worse
off, plus a fraction of those who have exactly the same level of consumption. That is, if F; is
the cdf of consumption in society at date ¢, then, for any c > 0, status s is given by

(2) s = Fi(c) = pF; () + (1 - wFi(c)
where u is some number strictly between 0 and 1 and F; (c) is the left hand limit of F; at ¢’

In the special model considered in Section 3, we assume that u is a function of status alone.
We return to the general specification in the central model of Section 4.

2.3. Risk. We suppose that all fair gambles are freely available.® Each individual can subject
part or all of that wealth to randomization, dividing the proceeds between consumption
and investment. Such randomization might involve participation in the state lottery, in
stock markets, or real-estate speculation. Under our interpretation, “consumption” is
lifetime consumption, so that within-period risk-taking will include occupational choice
or entrepreneurial ventures in addition to the assumption of short-term risk.

7Setting p = 1/2 implies that total status is always 1/2, across all distributions, with or without atoms. But it is
not needed in the formal analysis.

8With a finite number of individuals, there is an issue of satisfying the overall budget constraint. This issue
disappears as the number of individuals tends to infinity, given the fairness of the gambles. Suppose there are
N individuals, each with consumption budget b > 0. We wish to allow individuals to take the gamble with cdf
F, say. Suppose this cdf has maximum consumption C and minimum 0. It is not hard to show that individuals
n = 1,..., 1, say, can be given independent draws from F, with individuals n = 7z + 1,...,N treated as residual
claimants, in such a way that 1i1/N — 1, with probability one, as N — oo.
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For the sake of symmetry, we suppose that actuarially fair insurance against exogenous risk
is also available. This only becomes relevant once such exogenous risk is allowed. We will
remark further on this assumption in Section 3.

2.4. Dynastic Objective. Given initial wealth w, and a sequence of consumption distribu-
tions F;, a typical dynasty maximizes the present discounted value of expected payoffs:

3) Y 6'u (e, Filer)
t=0

where 6 € (0,1) is the discount factor, and expectations are taken with respect to any
endogenous randomization. Of course, the constraint (1) must be respected at every date.

2.5. Equilibrium. Each dynasty chooses an optimal policy, which involves choices to
maximize lifetime payoff as described in (3). At each date, a fair randomization of wealth
is chosen, and the resulting budget is split between consumption and investment. The
recursive application of these policies, aggregated over all dynasties, yields a sequence of
joint distributions for consumption, investment and wealth.

This sequence induces, in particular, a sequence of distributions F = {F;} for consumption at
each date, and a corresponding sequence of distributions G = {G;} for wealth.

A configuration of policies is a (Markov perfect) equilibrium if each policy maximizes expected
utility given the sequence of consumption cdfs F induced by the aggregation of all of these
policies. A steady state is an equilibrium in which the cdfs of consumption and wealth are
time-stationary: there are distributions F* and G* such that F; = F* and G; = G" for all t.

3. A SpeciaL Case WitH No ENDoOGENOUS Risk-TAKING

Often, it helps to understand a phenomenon by studying a situation in which it fails to
occur. In this section, we develop the idea that nondecreasing returns to scale in investment,
by preventing convergence, permits a remarkably simple equilibrium to exist. In such an
equilibrium, individual savings policies depend only on the discount factor, and economic
inequality is indefinitely perpetuated.

Consider the following restrictions:
Assumption 1. u depends on s alone and is C*, with u(0) = 0 and u’(s) > 0 for all s > 0.

Assumption 2. f is strictly increasing, C', convex in k, and f(0) = 0.

Assumption 3. The initial G satisfies G(0) = 0, and u(G(w)) is concave in w.?

o1f u(G(w)) is not concave, the arguments in the online Appendix can be applied here to show that there will
be an equilibrium in which individuals engage in fair bets in initial wealth, but only in the first period. If G’ is
the post-gambling wealth distribution, then u(G’(w)) is concave, with linear ranges of u(G’(w)) associated with
nontrivial gambling. The subsequent equilibrium is then as described here.
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The pure-status restriction on u and the convexity of f are not imposed for reasons of
plausibility. We shall discard them soon, but we use them here to illustrate a point. The
convexity of f notwithstanding, we find an equilibrium (see Proposition 1(i)) that generates
a concave maximization problem for each individual. There is no demand for risk.

This would be less striking if there were many deterministic equilibria, with varying
characteristics. However, Proposition 1(ii) shows that this equilibrium is the only “regular”
and “smooth” deterministic equilibrium, for general f. A deterministic equilibrium is
reqular if at each date, an individual has a unique deterministic best response at all but
possibly a countable many wealths.'? It is smooth if every individual employs a sequence of
differentiable consumption policies {ci}, with 0 < clt"(w) < 1 at all wealths w and dates f.

ProrositioN 1. (i) Make Assumptions 1,2, and 3. Then there exists an equilibrium in which almost
every dynasty makes a deterministic choice of consumption and investment, and has constant status
over time. In this equilibrium, the policy

4) ct = (1= 90wy,

is employed by almost every dynasty, which depends on neither the utility function nor the initial
distribution of wealth.

(ii) Suppose that Assumption 1 holds, and f(0) = 0. Consider any deterministic equilibrium described
by a family {c!} of consumption functions, that is regular and smooth. Then ci(w) = (1 — &)w for all
i, all t and all w.

The proof of this Proposition, and all other omitted proofs, are in the Appendix.

Several remarks apply to part (i) of this proposition. To begin with, as already mentioned,
the equilibrium we obtain induces a concave optimization problem for each dynasty, despite
the presence of convexity in f to an arbitrarily high degree. The convexity of f ensures that
wealth and consumption distributions stay suitably dispersed at every date: the marginal
gain from status never becomes high enough to create an incentive to deviate.

In particular, despite the strict convexity of the production function, there is no incentive
to gamble. While it is true that the gambling has positive net expected value in the sense
of output, the endogenous concavity of payoffs from that output more than outweigh the
convexity in technology.!!

Finally, the equilibrium has an extremely simple structure. Equilibrium policy depends
neither on the initial distribution of wealth, nor the exact forms of the utility function and the
production function. (The equilibrium distributions do, however.) In fact, the equilibrium
policy that we exhibit is the one that would be followed by an optimizing planner with
logarithmic utility defined on absolute consumption given a linear production technology.

10Note that each individual faces the same optimization problem conditional on initial wealth.

Hitis worth noting, however, that one can design simultaneous gambles on investment and insurance contracts
based on the output from such endogenous gambles that do better than no randomization at all, when the
production function is strictly convex. Such an outcome requires the individual to commit to investing the
realizations from endogenous gambling, and we disallow such insurance against endogenous risk. Indeed, the
attendant moral hazard would be extremely high. No one with a high realization of the gamble would want to
take up such insurance ex post.



6

What accounts for this structure is the delicate balance achieved across time periods: status
matters today, which increases the need for current consumption, but it matters tomorrow as
well, which increases the need for consumption tomorrow. In equilibrium — with a convex
production function — the two effects nicely cancel in a way that induces a particularly

simple equilibrium structure.'?

Proposition 1(ii) states that our simple equilibrium is the only deterministic equilibrium
in a broad class of policies. It is worth emphasizing that this result is independent of the
curvature of f. This observation acts as an entry point into the concave case that we shall
discuss in the next section. To see how, consider the following minor result:

RemaARk 1. Suppose f satisfies Assumption 4, as given in the next section, and that Assumption 1
holds. Then there is no reqular, smooth deterministic equilibrium.

The proof of this assertion is simple. If such a policy sequence were to be an equilibrium,
then it must be of the linear form described in Proposition 1(ii). So convergence of all wealth
and consumption levels would occur. A deviator could then adopt a strategy that led to large
gains in status for an arbitrarily large number of periods, yielding the desired contradiction.
While this remark leaves open the possibility of rather pathological deterministic equilibria,
the obvious resolution is to allow randomization.'?

4. Tue CENTRAL MoDEL WiTH ENDOGENOUS Risk-TAKING

We develop our central model in the light of the preceding discussion. If an equilibrium
deterministic policy keeps dynasties sufficiently “apart,” that policy is a full equilibrium. But
if the policy induces convergence, “small” deviations from the policy will generate “large”
gains in status. Such convergence must be therefore be prevented by the endogenous creation
of risky opportunities.

We describe the model. First, the production function is taken to be strictly concave, and a
little more:

Assumption 4. f is C', strictly increasing and strictly concave in k, with f(0) > 0, 6f(0) > 1, and
f(k) < k for all k large enough.

Next, utility is taken to be a function both of consumption and status:

12This observation may be viewed as a counterpart for rank-dependent status of the result established by Arrow
and Dasgupta (2009) where status derives from the average consumption level.

13Allowing randomization in consumption restores existence in this case, not surprisingly, since it is a limiting
case of the central model for which existence is available. For simplicity, suppose that all individuals have the
same initial wealth, wy, say. Now, if the assumptions of Remark 1 hold, there is an equilibrium that can be
derived simply from the standard one-agent problem of maximizing )2, ' Inb; subject to wy = ko + by and
fkt) = ke + by for t = 0,.... That is, if b; and k; solve this standard problem, then they also are the basis of
an equilibrium here. In this equilibrium everyone invests k; and randomizes the residual b; with the cdf of
consumption determined by the requirement that u(F;(c;)) = c;/2b}, for ¢; € [0,2b;], for t = 0,1...., under the
harmless normalization that u(1) = 1.
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Assumption 5. u(c,s) is C!, with u(0,0) = 0. It is increasing in s, with us(c,s) > 0 for all (c,s). It
is strictly increasing and strictly concave in c, so that u.(c,s) > 0 and is strictly declining in c. For
every s, uc(c,s) = 0asc — oo, and u.(c,s) = o0 asc — 0.

Finally, we assume that wealths are strictly positive and bounded to begin with.

Assumption 6. The initial distribution G has compact support, with G(0) = 0.

We make two remarks. First, under Assumption 4, an individual will never randomize on
k, whether or not continuation values are convex in investment. Any such randomization
can be dominated by investing the expected value of the investment, and then taking a fair
bet using the produced output. This domination is independent of the curvature of utility
or continuation values. Without loss of any generality, then, we can work with the equation:

flke) = braa + ke,
where b; is the consumption budget of an individual at date t, and k1 is deterministic.
Second, Assumption 5 does not impose any restriction on the curvature of u(c,s) in s.
However, we assume that utility is strictly increasing in consumption, which rules out the

pure status model. While our argument for the existence of equilibrium uses this restriction,
the main results on steady states and convergence do not; see Ray and Robson (2010).

We first describe the equilibrium outcome in every period, and then embed this solution in

reduced form into the fully dynamic model.

4.1. Within-Period Equilibrium and Reduced Form Utility. Consider an equilibrium.
Suppose that at some date, the distribution of consumption budgets is given by H. With
risk-taking, there will be a new distribution of consumption realizations, F. To understand
the conditions that follow, suppose that F is continuous (so that F = F); we will prove this
later.!* Because F is obtained from H by fair randomizations (some possibly degenerate),

[R1] F is a mean preserving spread of H.
The “reduced form utility” to any agent will be given by u(c) = u(c, F(c)):
[R2] p(c) = u(c, F(c)) is concave and continuous.

For if 4 were not concave, deviations with gambling in some “nonconcave segment” of u
must exist.

Finally, all individuals who engage in randomization must do so willingly. That requires
utility to be convex over the range of any randomization. [R2] calls for concavity throughout.
These two restrictions imply linearity over the range of any randomization:

[R3] u is affine over the range of any randomization used in converting H to F. Specifically,
suppose that

C C
f F(x)dx > f H(x)dx for all c € (c, 0),
0 0

l45¢¢e the end of the proof of Proposition (pr:RFU) in the online appendix.
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Then p(c) = u(c, F(c)) must be affine on (c, ¢). Figure 1 illustrates a u satisfying [R1]-[R3].

ProrositioN 2. Under Assumption 5, if H has compact support, there is a unique F associated with
H satisfying [R1]-[R3].

Under Assumptions 5 and 6, if {H;, Ft} is an equilibrium sequence of consumption budgets and

realizations, then at each t, Fy satisfies [R1]-[R3] relative to H;.

The proof of this proposition is technical and quite lengthy; see appendix for outline and
online appendix for details. The second part formally connects [R1]-[R3] to equilibrium,
and it is here that we justify the interpretation F; = F; for all .

Because it will matter for steady states, we dwell on the special case in which everyone has
a common positive consumption budget, so that H is concentrated on a single point:

CoroLLARy 1 (to Proposition 2). Make Assumption 5. For each b > 0, there is a unique cdf F
satisfying [R1]-R3] with the following properties:

(i) The mean of F equals b:

) f cdF(c) = b.

(ii) The support of F is an interval [a, d], and there exists a > 0 such that

(6) u(c, F(c)) = u(a,0) + a(c —a) forall c € [a,d].

(iii) a > 0, so u(c) = u(c, F(c)) everywhere, and o = u(a, 0).

Moreover, the slope of the affine segment « is a nonincreasing function of b.
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This corollary describes how a common consumption budget must be spread out by
gambling. All such gambles are fair, so we have (5). Moreover, [R3] tells us that 4 must be
linear over the overall domain of the gambles, which yields (6).

4.2. Steady State. A steady state is an equilibrium outcome in which the same distribution
of wealth recurs period after period. We characterize a unique steady state with positive
wealth:

ProrositioN 3. Make Assumptions 4 and 5. Then there is a steady state such that:

(i) Every individual (in a set of full measure) makes an identical investment k*, given by the unique
solution to 6 f'(k*) = 1, and has equal starting wealth w* = f(k*) at every date.

(ii) The distribution of realized consumption is as in Corollary 1 with b = b* = f(k*) — k".
Moreover:

(iii) There is no other steady state with positive wealth for almost every individual.

Observe that any steady state can be augmented by the addition of any mass of dynasties with
zero initial wealth. Such dynasties will have zero investment and consumption. However,
Proposition 3 asserts that zero wealth is the only impediment to uniqueness.

4.3. Existence and Convergence. Two crucial results are needed to justify our focus on the
steady state. That steady state would be rather meaningless if equilibrium convergence to
this steady state were not guaranteed from an arbitrary initial distribution of wealth. Second,
we need existence of equilibrium. The following proposition resolves both these issues.

ProrosiTioN 4. Make Assumptions 4, 5 and 6, and suppose, moreover that the infimum of initial
wealth is strictly positive. Then

(i) Under any equilibrium, the sequence of consumption distributions must converge over time to the
steady state distribution identified in Proposition 3.

(ii) An equilibrium exists.

While existence is largely of technical interest, it may be useful to provide an outline of the
long argument leading to part (i) of Proposition 4; see Appendix for details. Begin with any
intertemporal equilibrium. By [R2], the the reduced-form utility functions p;(c) = u(c, F(c))
are concave at every t. This generates an optimal growth problem with time-varying one-
period utilities. By a “turnpike theorem” due to Mitra and Zilcha (1981),"° starting from
any two (positive) initial wealths, the resulting path of capital stocks must converge to each
other over time. Therefore capital stock sequences bunch up very closely. When they do,
the preservation of concavity in u; requires that consumption be suitably spread out using
endogenous risk-taking. Further, the supports of all the gambles involved must overlap.
Hence all consumption budgets ultimately fall into a range over which utility is linear (see
[R3]). Thus, the marginal utility of consumption of all agents is fully equalized after some
date, so not only are capital stocks are close together, they coincide after some finite date. The

15[ the formal proof, we use an extension of the Mitra-Zilcha theorem due to Mitra (2009).
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risk-taking here

no risk-taking here
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FIGURE 2. THE FRIEDMAN-SAVAGE PROPERTY

remainder of the argument consists in showing that this (common) capital stock sequence
must converge.

5. SoME ImpLICATIONS OF THE CENTRAL MODEL

5.1. Risk-Averse and Risk-Preferring Choices. Figure 2 provides a diagrammatic repre-
sentation of the steady state. The first panel depicts the steady state cdf F*. This panel
is deliberately drawn to suggest that F* has no particular shape, only that it “cancels” all
curvature in u to create the affine segment (between 4" and d*) in the second panel. In
addition, a zone [0, 2"] must be present, over which no bets are taken and the utility function
is strictly concave.®

The two regions taken together generate the phenomena that Friedman and Savage (1948)
sought to explain by their postulate of an (exogenous) utility function which is alternately
concave and convex. In the steady state, there is aversion to downside risk; no individual
would ever take bets that would lead them into the consumption region [0,a"]. Yet there
must be risk-taking in the region [a*, d"], as emphasized throughout the paper.

In the stark specification we study, the zone [0, 2] is actually not inhabited in steady state.
This outcome is an artificial consequence of our assumption that there is no exogenous risk.
But this is easy to incorporate; see the discussion in Section 6.1 below. If this exogenous
risk would have realizations in the zone [0,a°], insurance has the effect of avoiding such
outcomes. The central model then generates both a demand for insurance and a demand
for gambling. (If some of the exogenous risk is uninsurable, both the zones will generally
be actively inhabited in steady state.)

It is of interest is that this phenomenon — risk-aversion at the lowest end of the distribution
coupled with risk-taking elsewhere — arises “naturally” in an environment where utility

16This follows because u has unbounded steepness in consumption at the origin.
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depends on status. There is no need to depend on an ad hoc description of preferences with
varying curvature for an explanation.'”

5.2. Scale-Neutrality. The use of relative consumption guarantees that the model is, in a
certain sense, scale-neutral. Two insulated societies with, say, two different production
technologies, will generally settle into two different steady states. Both the steady states
will generally exhibit the requisite patterns of risk-taking and risk-avoidance, even though
they may be located at different ranges in the wealth and consumption distribution. Unless
the Friedman-Savage utility function magically moves around to accommodate different
wealths in exactly the right way, it is not possible in their approach to generate the same
phenomenon at diverse aggregate wealth levels.

5.3. Pareto Inefficiency. Gambling in the Friedman-Savage world is ex-ante efficient: thereis
an assumed convexity in the utility function, and this convexity is well-served by risk-taking.
In our model, however, there is a pervasive consumption externality. I consider the status
consequences for me of my choice to gamble, but there must be consequences for others as
well, and these I ignore. Equilibrium risk-taking will then generally be Pareto-inefficient.

Consider first the special case in which u is jointly strictly concave in (c,s). Assign a status
rank of 1/2 to every individual that lives in a society of perfect equality. It then follows that
the steady state identified in Proposition 3 must be Pareto-inefficient. To prove this, simply
ban all gambling at the steady state. All individuals continue to invest k*, and utility in each
period is u(b*, 1/2). In contrast, in the steady state with gambling, utility is given by

fu(c, F'(c))dF*(c) < u (fch*(c), fF*(c)dF*(c)) =u(b*,1/2),
where we use the strict concavity of u, and Jensen’s inequality.

But inefficiency is more pervasive, and it does not require the concavity of u in status. In such
cases, some gambling may well be Pareto efficient, in line with the static model of Robson
(1992) and one of the models of Becker, Murphy and Werning (2005). Nevertheless, such
efficient gambling cannot be an equilibrium outcome in the steady state derived here:

ProrositioN 5. Under Assumptions 4 and 5, the steady state identified in Proposition 3 must be
Pareto-inefficient.

5.4. Consumption Distribution in Steady State. Our model predicts the equilibrium
distribution of lifetime consumption. If u is jointly strictly concave in (c,s), then Jensen’s
inequality implies that u(b*, F*(b*)) < u(b*, 1/2), sothatb* < (F*)~1(1/2). (This conclusion holds
whether or not u = 1/2.) That is, the mean of the distribution is less than the median, which
conflicts with the stylized fact that the mean exceeds the median. Utility functions which are
concave in consumption, but convex in status, on the other hand, are capable of generating
the realistic prediction that the mean exceed the median.'® Concavity in consumption and

70ne might object that (unlike Friedman and Savage) our individuals do not strictly prefer to bear risk. In the
aggregate, however, risk-taking arises as a robust phenomenon. From a revealed preference perspective, we
have accounted for the same observations as did Friedman and Savage.

181t is not hard to produce an example of such a utility function where the mean exceeds the median.
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convexity in status was the central formulation of Robson (1992), although the motivation
there was independent of the argument here.

6. Two ExTENSIONS

6.1. Exogenous Risk. Suppose that there are production or ability shocks, so that can write
the production function as f(k, 8) where k > 0 is the bequest as before, and 0 € [0, 1] is the
realization of a random variable. We can replace Assumption 4 by

Assumption 7. f is increasing in (k,0), C! and strictly concave in k, with £(0,0) > 0 for all
0 € [0,1]. Moreover, for all 6 € [0,1], 6f1(0, 0) > 1 and there exists K > 0 such that f(k, 0) < k for
all k > K.

Suppose that this risk can be fully insured in actuarially fair fashion. Then, without any loss
of generality, the production function can then be taken as g f(k, 0) which is deterministic
and satisfies Assumption 4. So insurable risk makes no difference at all to the analysis.

However, the assumption that all risk is insurable is strong. There may be ability shocks
(f includes all income sources, including wage income), or part of k may be in the form
of human capital bequests that are subject to moral hazard. In this case, Assumption 7
genuinely replaces 4. An equilibrium can still be shown to exist (see the online Appendix).
Now all three regions of the utility function — see Figure 2 — will generally be populated
even in the long run. As long as the effect of the random variable 0 is small enough,
however, there will be a generalized stochastic steady state (or invariant distribution) that
is close to the deterministic steady state found here, with endogenous and persistent risk-
taking. Individuals who find themselves in a concave region of utility above or below the
region where it is linear would then consume and invest in a way that tends to restore them
to the linear region. The stochastic steady state would then essentially involve balancing the
noise introduced by uninsurable risk and this restorative behavior.

6.2. Status from Wealth. Status in the current model derives explicitly from consumption
rather than wealth. Veblen (1899) coined the phrase “conspicuous consumption” as a
reflection of the capacity of observable consumption goods to signal underlying wealth
and thereby generate status. Although the current model cannot do justice to Veblen, the
equilibrium here can be reinterpreted as a fully separating equilibrium in which observable
consumption signals underlying unobservable wealth.'’

To see this, reconsider the steady state of our model, in which consumption generates status.
At the start of any date, almost all individuals have wealth w* = f(k*); but the after-gambling
wealth distribution has continuous cdf G*, say, which is the cdf of after-gambling wealth
k* + ¢, where the cdf of c is F*. That is, G*(k* + ¢) = F*(c), and status is F*(c) for all ¢ > 0. For

OThere is yet another formulation in which wealth is observable, just as consumption is in our model. This is a
variant which is not accommodated. It would be of interest to extend our analysis to this case. It is not obviously
more difficult, but it is the task of another paper. (It is fairly obvious that endogenous risk-taking would also
arise if there is convergence, but convergence would have to be proven.
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individual optimality, an individual who has any after-gambling wealth w > 0 must solve
(7) max[u(c, F*(c)) + du(c, F*(c’))] subject to f(w —c) =c" + k7,
c,c’

where everyone else behaves in accordance with the equilibrium. That is, the individual
would choose to invest k* over the range of after-gambling wealth levels generated by the
consumption gamble F* and would find it optimal to take the gamble G* in the first place.

It is easy to interpret this as a separating equilibrium in which observable consumption
signals unobservable after-gambling wealth. Suppose everyone else behaves as before, and
consider the two-period problem faced by any individual. This is

(8) mcax[u(c, G*(w(c))) + du(c’, G*(w(c’)))] subject to f(w —c) =c" +k,

where w(x) is the after-gambling wealth level inferred from observing consumption level x.
However, since w(x) = k*+x forall x > 0, it follows that G*(w(x)) = F*(x), our individual solves
(8) exactly as she solves (7). Moreover, by the one-shot deviation principle, no profitable
deviation across multiple dates can exist. It follows that the steady state equilibrium where
consumption generates status directly can be reinterpreted as a separating equilibrium where
consumption signals after-gambling wealth.?’

7. CONCLUSION

In this paper, we embed a concern for relative consumption into an otherwise conventional
model of economic growth, and examine its consequences. In our main result, obtained
with conventional concavity restrictions on the utility and production functions, there must
be persistent, endogenous and inefficient risk-taking in equilibrium.

More generally, there must be persistent consumption inequality. When that inequality is
generated “naturally”, as it is with a constant- or increasing-returns technology, behavior is
simple and deterministic. On the other hand, when inequality tends to diminish, as it does
under concavity, it is recreated by endogenously generated recurrent risk-taking.

What might be the real-world manifestations of such risk-taking? We take as wide a view

as possible. We do not emphasize state lotteries,?! as did Friedman and Savage, but also
view the choice of career in this light, such as entrepreneurship or the decision to become
a professional sportsperson, situations in which the expected rate of return may be quite
low.?? Consider, for example, a restauranteur who invests heavily in a new eatery, despite a

200ut of steady state, initial wealth levels may differ across individuals. However, realized observed
consumption is still strictly increasing in total after-gambling wealth, by the weak concavity of current utility
and the strict concavity of the relevant continuation value, so the argument can be generalized.

21The salient feature of state lotteries is that they offer a very small probability of a very large gain, and a
probability near one of a small loss. It is difficult to explain why these would be the only unfair gambles taken
in an expected utility framework. See Chew and Tan (2005) for an explanation using weighted utility.

22The risks emphasized here are idiosyncratic, in contrast to the stock market, for example, which has a large
aggregate component. What would the current approach predict for the attitude of individuals to pure aggregate
risk? In the simplest case, each realization of an aggregate shock would leave each individual’s status unaffected.
The only effect then would be that on absolute consumption, c. The current assumption that u(-, s) is concave
then implies that individuals would decline fair aggregate shocks, in sharp contrast to the gambling that is
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half-life of six months for such establishments. Alternatively, consider a low-level member
of a drug gang who earns only about the minimum wage, faces the possibility of arrest
and imprisonment and of being murdered, and can only on average have only a modest
chance of promotion within the gang. Such phenomena admit of alternative explanations —
most obviously that the subjective probabilities of success in these two cases are exaggerated
(perhaps — as in the case of professional sports — by the media). But the current explanation
is attractive in that it does not rely on such misperception.
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APPENDIX

This appendix outlines the proofs; detailed arguments are in an online appendix. We begin
with a central lemma (proof omitted):
Lemma 1. At any date with equilibrium cdf of consumption F, u(c) = u(c, F(c)) must be concave.

Proof of Proposition 1. Part (i). Suppose that all individuals in a set of unit measure use the
policy function (4). Let G = {G;} be the resulting sequence of wealth distributions. Clearly,
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for every date t and for every w in the support of Giy1, Gi1(w) = Gy ( f ~L(w)/ 6)). A recursive
argument (omitted) using Assumption 3 now establishes

LemMma 2. u(Gy(w)) is concave for all dates t on the support of Gy.

Fix t. Suppose that an individual employs the policy (4) for all s > t+1, and that everyone else
employs (4) at all dates. Define Vi, 1(w’) to be the discounted value to our individual under
these conditions, starting from wealth w’ and date t + 1. Then Vi,1(w’) = (1-0)" u (G4 (w”)).
Consequently, if k € [0, w] is chosen from starting wealth w,

u (Fe(w = k) + 6V (f(k)) u (F(w = k) +6(1 = 8) "1 (G (f(K)))
u (G ([w = k1/(1 = 6)) + 6(1 = 8)~'u (G, (k/6)).

By Lemma 2, this expression is concave in both w and k so no randomization is necessary.
Moreover, given the concavity of u(G¢(w)) and the fact that u is C!, G; must have left-hand
and right-hand derivatives everywhere (G; (w) and G; (w) respectively), with

9) G; (w) = G} )
for all w. So a solution to the first-order condition

—1' () G/ ([w = k]/(1 = 8)) (1 =) + 6(1 = 8) '/ (r1)G; (k/6)6™" 2 0
(10) > —u' ()G ([w=k/(1=6) (1 =8)"" +6(1 = 6)"'' (r41) G/ (k/6) 67!

(where 7; is the resulting status in date s, for s = t,¢ + 1) is an optimum. Using (9), we see
that k = 6w is indeed a solution to (10), so that by the one-shot deviation principle and the
fact that t and w are arbitrary, (4) is an equilibrium policy.

Part (ii).”> Notice that each individual is atomless and therefore has the same intertemporal
utility criterion as any other. Because the equilibrium is regular, we see that at any date,
the solution to the optimization problem is unique except at countably many wealth levels.
But it is easy to see that such a solution cannot admit more than one differentiable selection.
Therefore all individuals must use the same savings policy, which we denote by {c;}. Given
this environment, let V;(w) be the (lifetime) value to a person with wealth w at date t. By
using exactly the same steps as in Part (i), we see that for every w, ¢ = ¢;(w) must maximize

(11) u(Ge (c71(0))) + 61 = ) u (Gr (57 (w - 0))),

where s¢(w) = w —c¢(w) is also strictly increasing and differentiable, by regularity. By Lemma
1, u(F¢(c)) is concave in ¢, and so F; is differentiable almost everywhere. Consequently,
because Gi(w)) = Fi(cy(w)) and c; is differentiable and strictly increasing, G; is also
differentiable at a.e. w. Using the fact that optimal c and w — ¢ are both strictly increasing
in w, we may therefore differentiate the expression (11) with respect to c at almost every w,
set the resulting expression equal to zero (it is the first-order condition) and cancel common
terms all evaluated at the same rank or same wealth to obtain

1 6 1 6 1
w) 1-6sj(w) 1-61-cj(w)

or ¢;(w) = (1 — ) for every t and for a.e. w. This completes the proof of the proposition. O

23WWe are indebted to a referee for suggesting this line of proof, which is simpler than the one we had.
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In what follows, we maintain Assumptions 4-6 throughout.

Proof of Proposition 2. First suppose that H has finitely many mass points. For any “initial
point” a such that H(a) < 1, and for any “terminal point” d > g, let [aHd] be the affine segment
that connects u(a, H(a)) to u(d, H(d)). Associated with [aHd] is a positive slope «, given by
u(d, H(d)) — u(a, H(a))

d—a ’

4

Say that [aHd] is allowable if a > u.(a, H(a)).

Lemwma 3. If [aHd] is allowable, then the following distribution function F is well-defined and strictly
increasing: F(c) = H(c) for all ¢ ¢ (a,d), and

(12) u(c, F(c)) = u(a, H(a)) + a(c — a)
forallc € (a,d).
Proof. See the online appendix.

For allowable [aHd] with associated distribution function F as described in Lemma 3, define

T () = f [F(z) - H(2)ldz

for x > a. Say that the allowable segment [aHd] is feasible if

(13) o (x) 2 0
for all x € [a,d), with equality holding at x = d:
(14) ljaria)(d) = 0

Because H has finitely many jumps and is flat otherwise, and because u is concave in ¢, it
is easy to see that from any a, there are at best finitely many feasible segments (there may
not be any). Construct a function d(a) in the following way. If, from g, there is no feasible
segment with d > g, set d(a) = a. Otherwise, set d(a) to be the largest value of d among all d’s
that attain the highest value of a. The proofs of the following four lemmas are omitted.

LemMma 4. Let [aHd] and [aHd'] be two feasible segments. If &’ > a, then d’ > d.
Lemma 5. For every a with H(a) < 1, a(a) and d(a) are well-defined.
LEMMA 6. Suppose that a™ | a with d(a") > a" for all n. Then d(a) > a. %

LeEmMma 7. Suppose that [aHd] with slope « is allowable, but (13) fails at x = d. Then the maximum
slope a(a) from a strictly exceeds «.

Now construct a utility function y* on consumption alone. In the sequel this will be the
unique reduced-form utility satisfying [R1]-[R3] for the distribution H. The construction
is always in one of two phases: “on the curve” or “off the curve”, referring informally to
whether we are “currently” following the original function u(x, H(x)) or are changing it in
some way. Start at a = 0, follow the original function u(a, H(a)) as long as d(a) = a (stay “on

24This assertion is false for arbitrary sequences a"; consider a distribution H with a unique mass point at a. It is
clear that d(a) = 0, while d(a’) > 0 for all @’ < a.
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the curve”); at the first point at which d(a) > @ — and Lemma 6 guarantees that if any d(a) > a
exists, there is a first such a — move along the line segment [aHd(a)] (go “off the curve”).
Repeat the same process once back again “on the curve” at d(a).>> The reduced-form function
— call it y* — will be made up of affine segments in the regions in which d(a) > 4, and when
d(a) = a, of stretches that locally coincide with u(c, H(c)). It is easy to see that there are at

most finitely many affine segments involved in the construction of y*.°

When H has finite support, this generates a reduced-form utility [RFU] (proof omitted):
LEmMA 8. u*, as given by the construction, satisfies [R1]-[R3].

Now we to prove that a larger class of consumption budget distributions all admit reduced-
form utilities satisfying [R1]-[R3]. We begin by proving the uniqueness of such functions.

LemMma 9. For every distribution of consumption budgets H, there is at most one RFU.

Proof. Suppose on the contrary that y and u” are two distinct RFUs for H, both satisfying
the needed properties. Let a* be the infimum value of ¢ such that u*(c) # u(c). Without loss
of generality, u(a*) > p’(a") and u(c) > p’(c) for all c € (a*,b), for some b > a.?” Let Fand F’
be the associated distribution of consumption realizations. Then F(c) = F'(c) for all ¢ < a7,
F(a*) > F'(a*), and F(c) > F'(c) for all ¢ € (a*, b), so that

fCF(x)dx > fF’(x)dx > fc H(x)dx.
0 0 0

for all ¢ € (a%,b), where the second inequality follows from second-order stochastic
dominance (Condition R1 applied to F’). Using [R3] applied to F, we must conclude that p
is affine over (a*, b). Let [a%,d] be the maximal interval over which p is affine. Then

d
fo |[Ft) - H(t)|at = 0.

At the same time, because y is linear and y” is concave on (a*, d] (Condition R2), it must be
that u(c) > u’(c) for all ¢ € (a%,d], so that F(c) > F'(c) for all ¢ € [0, d] with strict inequality on
(a¥,d]. It follows that

d
f [F'(t) - H(p)at <o,
0
which contradicts the fact that F” must satisfy [R1]. O

To complete the proof of the proposition, we use an extension argument starting from finite
H. Consider the collection H of all cdfs H on [0, M], where M < co. We seek the existence
of a mapping ¢ that assigns to each H € H its unique RFU p. Let H™ be the subspace
of H containing all H with finite support. Then H™" is dense in H in the weak topology.
Lemma 8 tells us that the mapping ¢ is already well-defined on H'". To extend it, we use
the following three lemmas (proofs omitted):

251t could be that d(d(a)) > d(a) so that we immediately leave the curve again at d(a).
26Indeed, the number of affine segments cannot exceed the number of atoms in H.
2/That such an interval must exist follows from the concavity of both  and p’.
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Lemma 10. Let G" converge weakly to G, and (a",b") to (a, b). Then

b" b
f G"(x)dx — f G(x)dx as n — oo.

n

Lemma 11. Consider any sequence H" € H converging weakly to H € H, and suppose that there
exist associated RFUs u", along with distributions of realized consumption F". If F" converges
weakly to F, then u given by u(c) = u(c, F(c)) for all ¢ is the RFU for H.

Lemma 12. Every sequence in ¢p(H™), the space of all RFUs for distributions in H™, admits a
weakly convergent subsequence.

Now proceed as follows. Pick any distribution H € H. We know that there is a
sequence H" € H'™ that converges weakly to H. Each H" has its (unique) RFU u", with
associated distribution of realized consumptions F"*. By Lemma 12, {F""} admits a convergent
subsequence that weakly converges to some distribution F. By Lemma 11, this is an RFU for
H. By Lemma 9, it is the only one.

To establish the second part of the proposition, we show (see online appendix) that F; = F;
for all t (Assumption 6 is used here). This allows us to interpret F;(c) as equilibrium status
at ¢, and then deduce [R1]-[R3] (Lemma 1 plays a crucial role). O

Proof of Corollary 1. See the online appendix.

Proof of Proposition 3. Let F* be any steady state distribution of consumption. Then we know
that the RFU u*(c) = u(c, F*(c)) is concave. By Assumption 5 and the fact that u*(c) > u(c, 0)
for all ¢, u* has unbounded steepness at 0. Consider the problem of choosing {b(i), k;(i)} to
maximize Y ;o 6’ (b (7)), subject to wy(i) = by(i) + k(i) and wer1 (i) = f(ke(i)) for all ¢, with wy(i)
given. Because p* is concave and f is strictly concave, there is a unique optimal investment
strategy, assigning an investment k and consumption budget b for every starting wealth w.

One can check (see, e.g., Mitra and Ray (1984)) that for each individual, k; must converge to
a steady state. Because pi* has unbounded steepness at 0, this steady state value k" is defined
by 6f’(k*) = 1, provided wy(i) > 0. Finally, F* must be the distribution associated with the
degenerate consumption budget b* = f(k*) — k*. That verifies that if there is any steady state
with positive wealth for all individuals, it must be the one described in the Proposition.

We need to complete the formalities of showing that this outcome is indeed a steady state.
All we need to do is exhibit an optimal consumption policy. If the consumption budget b at
any date equals b* = f(k*) — k", take a fair bet with cdf F*, consuming the proceeds entirely.

We already know that the investment policy is optimal. So is the consumption policy,
because utilities are linear in realized consumption over the support of F*. m|

Proof of Proposition 4. The steps to follow assume the conditions in the proposition.

Part (i): Convergence. We review the main argument. The first step is Lemma 13, based
on a turnpike theorem due to Mitra and Zilcha (1981) and Mitra (2009). It states that in
any equilibrium, the paths followed by all agents converge to one another. Lemmas 14 and
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15 ensure that convergence occurs to some common sequence which has a strictly positive
limit point (in time). The second step is Lemma 17, which states that when all stocks cluster
sufficiently close to this common limit point, a bout of endogenous risk-taking must force
all consumption budgets to lie in the same affine segment of the “reduced-form” utility
function p at that date. Lemma 18 states that all individual capital stocks must fully coincide
thereafter. The remainder of the proof shows that this common path must, in turn, converge
over time to k*, with consumption distributions converging to F*, the unique cdf associated
(as in Corollary 1) with d* = f(k*) — k*. Lemmas 13-17 are stated without proof.

Lemma 13. In any equilibrium, sup; ; k¢ () = ke(j)| = 0 and sup; ; |be(i) — be(j)] = 0 as t — oo.

LemMma 14. In any equilibrium, for any i with initial wealth strictly positive, by(i) > O for every t
and lim sup, b;(i) > 0.

LemMma 15. There exists o > 0 so that for every € > 0, there is a date T

(15) br(i)elo—¢€,0+¢€]

forall i.

LemMma 16. For any o > 0, there exists ¢ > 0 such that for all e < ¢/2,
(16) Fi(o +€)—Fi(o—€) < e
independently of t.

We now combine Lemmas 15 and 16 to prove

LemMma 17. There exists a date T such that for every i, br(i) belongs to the interior of the same affine
segment of ur; in particular, ur.(br(i)) is a constant independent of i.

LemMma 18. For every date t > T + 1, where T is given by Lemma 17, the wealths, investments and
consumption budgets of all agents must fully coincide.

Proof. By Lemma 17, we see that u’.(br(i)) = ar for all i, where ar > 0 is independent of i.
Let Vr41(w) be the value function at date T + 1; it is concave because i is concave for all ¢.
Therefore Vr.1(f(k)) is strictly concave.

Note that br(i) > 0 for all i by Lemma 14. So using the Bellman equation between dates T
and T + 1, and writing the first order condition, we see that

ar > OBi(kr(i)), with equality if kr(i) = 0
for every agent i, where f3;(k) denotes some supporting hyperplane to Vr,1 o f at k. It follows

that the wealths of all agents fully coincide at date T+1. Itis easy to see that optimal programs

are unique starting from any initial wealth at any date,”® so all wealths, investments, and
consumption budgets must fully coincide from date T + 1 onward. m]

In what follows, we consider only dates t > T. By Lemma 18, the equilibrium program has
common values at all dates thereafter: (wy, b;), where all these values are strictly positive.
By Proposition 2 and Corollary 1, the distribution F; is also fully pinned down at all these

BThe optimization problem facing each individual is strictly concave.
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dates. Denote by a; the corresponding slopes of the affine segments of i, given by (6); these
too are all strictly positive.

LemMma 19. Suppose that for some t > T + 1, ky < kyyq and ay < apy1. Then ks < kgyq forall s > ¢.

Proof. Suppose that for some t, we have k; < ki1 and ay < apyq. If kiyy = 0, then so is k;, and
then by = f(0) > bryo, so that by then very last part of Corollary 1, as41 < apyp. Otherwise,
kir1 > 0, and using the Euler equations for utility maximization (with appropriate inequality
at date t, and with equality at date t + 1) and combining them with the concavity of f,

at Aty
—— 2 06f"(k) 2 0f (ki) = ——,
at+1 at+2
which permits us to conclude that a;;1 < a2 once more. Using again the very last part of
Corollary 1, we must also conclude that b;1 > bsy. Therefore

kt+1 = f(kt) - bt+1 < f(kt+1) - bt+2 = kt+2~

We have therefore shown unambiguously that a1 < @ty and ki1 < kio. We can continue
the recursive argument indefinitely to show that ks < k.1 for all s > ¢. O

LeEmMA 20. The common sequence of investments {k}, defined for t > T + 1, must converge to k",
which solves 6 f'(k*) = 1.

Proof. First we establish convergence. If the sequence {k;} is either eventually nondecreasing
or eventually nonincreasing, it must converge. Otherwise, there is some date t > T + 1 with
ki > ki1 < kiyo. Then
biv1 = f(ke) = kv > f(kie1) = keso = breo,

which implies (by Corollary 1) that @41 < aty2. But now all the conditions of Lemma 19 are
satisfied, so that in this case {k;} must eventually be nondecreasing. By Assumption 4, k; is
bounded and so must converge. It follows that b; and therefore a; also converge. Passing to
the limit using the Euler equations, and noting from Assumption 4 that 6f'(0) > 1, we must
conclude that lim k; = k*. O

Proof of Proposition 4. Part (i): Lemma 17 assures us that there exists a date T at which
consumption budgets br(i) belong to the same affine segment of ur for every i. Lemma 18
states that for every date t > T + 1, the wealths, investments and consumption budgets of all
agents must fully coincide. Lemma 20 states that the common sequence of investments {k;},
defined for t > T + 1, must converge to k*, which solves 0 f'(k*) = 1.

At the same time, Corollary 1 asserts that for all t > T + 1, the equilibrium distribution of
consumptions must be the unique cdf associated with the common consumption budget
bs, where “association” is defined (and uniqueness established) in Proposition 2. Therefore
the sequence of consumption distributions must converge to the unique cdf associated with
b* = f(k*) — k*. This is the unique steady state of Proposition 3, so the proof is complete.

Part (ii): Existence will follow as a corollary of Proposition 5 in the online appendix. This
proves existence for a more general model than the one in the paper, in which the production
function can have convex segments and there are possibly stochastic shocks to production.

O



