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Abstract

Which social norms and networksmaximize cooperation in bilateral relationships? We study
a network of players in which each link is a repeated bilateral partnership with two-sided
moral hazard. e obstacle to community enforcement is that each player observes the be-
havior of her partners in their partnerships with her, but not how they behave in other part-
nerships. We introduce a new metric for the rate at which information diffuses in a network,
which we call viscosity, and show that it provides an operational measure for how conducive
a network is to cooperation. We prove that clique networks have the lowest viscosity and that
the optimal equilibrium of the clique generates more cooperation and higher average utility
than any other equilibrium of any other network. is result offers a strategic foundation
for the perspective that tightly knit groups foster the most cooperation. We apply this frame-
work to analyze favor exchange arrangements, decentralized trade in networkedmarkets, and
social collateral.
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 Introduction

Enforcement of cooperation through social and communal mechanisms is pervasive. A large lit-
erature on social norms emphasizes the role of networks inmechanisms of informal enforcement,
with the understanding that the network structure inïuences how information diffuses and the
incentives to cooperate. In particular, it is often argued that groups that are most socially con-
nected or tightly knit induce the strongest incentives to cooperate. In this paper, we develop
a strategic foundation for analyzing the role of networks in supporting cooperation in bilateral
relationships, and identify networks that promote the greatest cooperation and efficiency.

We model a networked society in which each link is an ongoing bilateral partnership with
two-sided moral hazard. Each partnership meets at exponentially distributed arrival times to
play a prisoners’ dilemma at stakes that it chooses. Higher stakes generate greater payoffs for
the partnership, but increase the temptation to shirk—and thus require stronger incentives. Two
partners can ensure cooperation at modest stakes using simple bilateral grim trigger strategies
between them, but involving othermembers of the community in their enforcement arrangement
enables them to cooperate at higher stakes, using rewards and punishments in other relationships
to enforce cooperation in their own. is is the essence of community enforcement.

A challenge central to community enforcement is private monitoring: each player knows what
transpires within her own partnerships, but does not observe when or how her partners interact
with others. As a consequence, she lacks direct access to information that would enable her to
reward or punish her partners for what they have done in other relationships. e social network
can partly mitigate this difficulty, since each link is not only a productive relationship, but also a
conduit for information. We characterize networks that optimally address this issue.

Our main result is that the optimal network divides society into entirely disconnected cliques.
e clique of degree d is a network of d+  players that is completely connected; i.e., each of these
players is linked to all the others. We prove in eorem  that there exists an equilibrium on this
clique that attains the highest utilitarian average payoffs among all equilibria on all networks in
which each player has at most d partnerships. An implication of our result is that if no player can
have degree exceeding d, then it is optimal to organize society into cliques of degree d (ignoring

Within sociology, see Festinger, Schachter, and Back (), Granovetter (), Coleman (), Raub and
Weesie (), and Granovetter () for a survey. Within economics, the impact of social connectedness and net-
works on economic behavior is highlighted by Glaeser, Laibson, and Sacerdote (), and features prominently in
discussions of risk-sharing (Besley, Coate, and Loury ; Udry ; Fafchamps and Lund ; Bloch, Genicot,
and Ray ; Ambrus, Möbius, and Szeidl ), trading without enforcement (McMillan and Woodruff ; Dixit
), and political economy (Grossman and Helpman ).





remainder issues). When accounting for linking costs explicitly, we înd that the complete network
is optimal if linking costs are linear or concave, and that an optimally sized clique is Pareto efficient
if linking costs are strictly convex. ese network comparisons apply for every level of patience
and frequency of interaction.

To appreciate why cliques are optimal, consider the incentives that Ann faces in deciding
whether to work in her partnership with Bob. e key question that she must ask herself is, were
she to shirk, would she be able to take advantage of her other partners before they punish her?
At the core of her incentives is the speed at which information propagates through the network
from her partnership with Bob to her other partnerships. Her calculation must account for the
number, length, and arrangement of paths within the network from Bob to her other partners.
To account for these incentives, we derive a new measure for networks, network viscosity, which
is a sufficient statistic for Ann’s incentive to work. e viscosity factor measures the discounted
probability that Ann will be able to take advantage of another one of her partners (say, Carol)
before Carol can punish Ann.

In eorem , we prove that among all networks that have a maximal degree of d, the clique
of degree d has the lowest viscosity. We prove this result by establishing that on the clique, the
indirect paths between Bob and each of Ann’s other partners are shorter than they could be on
any other network with maximal degree d. Since computing viscosity for every possible network
in which the maximal degree is d is infeasible, we develop a fundamental coupling argument that
maps each path that propagates punishment on any of these networks with one on the clique that
propagates it faster.

Merely because a clique maximizes the speed by which punishments may spread does not im-
ply that its equilibria necessarily generate greater cooperation than those of other networks. e
challenge is that incentives both on and off the equilibrium path vary greatly across networks and
equilibria, so it is not feasible to compute the frontier of equilibrium payoffs and verify the incen-
tive compatibility of punishments for every possible conîguration of parameters. Accordingly,
ranking networks by direct computation of equilibria is analytically intractable.

We introduce two conceptual insights that sidestep this technical hurdle. e îrst is that
for a symmetric network—such as a clique—we can characterize the best stationary equilibrium
payoffs for every discount factor. ese payoffs, as we prove in eorem , are those of a binding
contagion equilibrium, in which each player is just willing to work on the equilibrium path but
shirks once she has observed anyone else shirk. Of all the equilibria on a symmetric network,
contagion makes the most effective use of viscosity in that network.

e second insight is that even if it is unclear whatmight constitute an optimal equilibrium on





an arbitrary networkG, all equilibria are bound by a common constraint: shirking forever cannot
be a strictly proîtable deviation. Perhaps surprisingly, this is all that is needed, in combination
with our prior results, to înd the optimal network. From it we derive a series of implications that
apply our viscosity result to identify a clique whose binding contagion equilibrium outperforms
every equilibrium on G.

Viscosity not only is an important technical element in our proof, but also provides a new
operational way to measure how conducive a network is to cooperation. A rich literature on
networks has argued that tightly knit networks offer the greatest cooperation (Granovetter ;
Coleman ) but often has often focused on “local” measures such as clustering and support
coefficients. But networks may be identical by these measures and yet support different levels
of cooperation. For instance, we show in an example in Section  that although all circles of
more than three players have identical clustering and support coefficients of zero, nevertheless
viscosity is strictly increasing in the circumference of the circle, and consequently the attainable
level of cooperation is strictly decreasing. In addition to producing a closed form expressions
for the viscosity of cliques, we offer a înite algorithm to compute the viscosity of any arbitrary
network.

Viscosity is a pivotal consideration for networked relations that feature moral hazard in part-
nerships, and we demonstrate its relevance by considering three other such settings. First, we
examine a “favor exchange” environment in which each player randomly encounters opportuni-
ties to do favors for his neighbors. Although no two players are ever called upon to do favors for
each other simultaneously, the essence of our results remains: if each player can form up to d
links then the clique of degree d maximizes average utility. Second, we consider networked mar-
kets that are segregated into buyers on one side and sellers on the other; no two players on the
same side of the market can be linked. In such a two-sided network, viscosity can be computed
separately for each side of the market. We show that if the maximal buyer degree is dB and the
maximal seller degree is dS, then the “bipartite clique” (in which there are dS buyers and dB sellers,
each linked to all the players on the opposite side of the market) supports the greatest gains from
trade. ird, we highlight how low viscosity can endogenously generate social collateral that not
only induces greater cooperation within the network, but improves relationships with outsiders
to the network. We illustrate this effect by analyzing whether a îrm would choose to hire from
a spot market or through the referral of an existing worker when the challenge is that of moral

Clustering coefficients measure whether two neighbors of a player are linked to each other; see Jackson (,
p. ). e support coefficient, deîned by Jackson, Rodriguez-Barraquer, and Tan (), measures whether two linked
players share a common neighbor.





hazard. We show that the îrm would prefer to hire from the network because this permits it to
reduce its offered wages, and that its incentives to do so are greater when the network has low
viscosity.

roughout our analysis, we study contagion equilibria on cliques because they attain the
maximal level of cooperation, providing a bound on equilibrium payoffs. Other types of social
norms could also potentially attain the same bound, and so network comparisons do not require
any restriction to contagion equilibria. For example, suppose that players are able to communicate
when they meet, and assume that “innocent” players and “third parties” communicate truthfully.
A compelling alternative social norm is one in which “innocent” players continue cooperating
with each other while ostracizing only those who are “guilty.” We show that this alternative social
norm generates the same network comparisons as in our main results.

Related Literature Our work builds on ideas in both repeated games and networks. Here, we
summarize research that is most closely related to our general framework.

e issue of private monitoring that we tackle was îrst addressed in the literature on con-
tagion, which seeks to understand how players interacting anonymously in a random-matching
environment can be induced to cooperate in prisoners’ dilemmas. Kandori () and Ellison
() were the îrst to develop contagion in this setting, and Harrington () develops a sim-
ilar approach for a four player game in which behavior is non-anonymous. e key idea that we
adopt from contagion is that relationships can be strategically interlinked to improve cooperation
even in the absence of communication. In contrast to the prior literature, which makes restric-
tions or enriches the setting to guarantee existence, our variable-stakes setting cleanly affords
existence and optimality of contagion equilibria on symmetric networks.

Our main interest is to compare networks from the standpoint of cooperation, and to under-
stand the beneîts of indirect paths. Within the recent theoretical literature on network-based
cooperation, Karlan, Möbius, Rosenblat, and Szeidl () articulate a static model of how indi-
rect paths within a network can be leveraged towards social collateral between players who are
not directly linked. eir work offers notions of trust within networks that, like our measure of
viscosity, cannot be reduced to merely local information about a player’s neighborhood.

Jackson, Rodriguez-Barraquer, and Tan () also study contagion on networks, with a par-
ticular focus on how contagion can be locally contained rather than spreading globally. ey

We tackle the question of whether an ostracism social norm can be incentive compatible in our companion paper,
(Ali and Miller ).

We defer discussion of work related to our applications to Section .





study a complete information environment in which a player’s neighbors all publicly and instan-
taneously observe his actions along each link. Since information propagation has no role in their
framework, every network (including a tree) in which each player has some minimal degree gen-
erates the same level of cooperation. ey înd that, of all such networks, only “social quilts”
(basically trees of cliques) are renegotiation-proof. Our framework focuses instead on the fric-
tion that each player observes only her interactions, and not those of others, and the role of the
network is to foster endogenous information propagation. us, the force that makes cliques
optimal in our framework is different from that which their work elucidates.

A different approach to community enforcement focuses on pooling incentive constraints
with synchronous interaction, an approach reminiscent of multi-market collusion (Bernheim and
Whinston ); this logic is applied to networks by Maggi () and Lippert and Spagnolo
(). Because pooling incentive constraints requires slack incentives to subsidize those that are
not slack, this literature înds that community enforcement can improve upon bilateral enforce-
ment in some, but not all, relationships.

Another strand of literature on repeated games on networks has focused on local interaction
environments in each player takes a single action that affects all of his neighbors, rather than in-
teracting with each of them bilaterally. Our approach (and those described above) apply to the
community enforcement of bilateral relations, as in the trade between buyers and sellers, or the
exchange of favors in a community; by contrast, the analysis of local interaction environments
is applied most readily to incentives in local public good provision. Haag and Lagunoff ()
study optimal network design and înd that cliques are optimal in order to separate impatient
players from those who are more patient. Although their setting also features private monitoring,
a player’s action is observed by all of her neighbors and so the force that pushes towards cliques in
their setting is orthogonal to ours. Recently, Wolitzky () constructs contagion equilibria to
support public good provision with private monitoring, and Nava and Piccione () construct
“temporary” contagion equilibria for local interaction games in which players are uncertain about
the network structure. ese papers all focus on synchronous local interaction rather than asyn-
chronous bilateral interactions.

 Model

Network A society is a înite set of players, N ≡ {, . . . ,n}, connected by an undirected net-
work G, which is a set of cardinality- subsets of N. e network is commonly known by the
players, and is îxed throughout the game. We use {ij} to indicate a link, and deîne ∣G∣ to be the





number of links in G. Much of our analysis concerns the incentives of each player on the link:
accordingly, we use ij to signify “player i on link {ij}” as distinct from ji (“player j on link {ij}”).

Taking network G as given, player i’s neighborhood Ni is the set of players to whom player i
is linked: Ni ≡ { j ∈ N ∶ {ij} ∈ G}. e cardinality of Ni is player i’s degree, denoted by di. A path
from player i to j is a sequence of nodes i, . . . , iZ such that {iziz+} ∈ G for each z ∈ {, ...,Z − },
i = i, iZ = j, and each node in the sequence is distinct. A cycle is a sequence of nodes i, . . . , iZ−, i
such that i, . . . , iZ− is a path, and {iiZ−} ∈ G. A component G′ of a network G is a maximal
connected subnetwork; i.e., if {ij} ∈ G′ then {kℓ} ∈ G′ if and only if there exists a path in G that
contains both {ij} and {kℓ}.

Social interactions Time is continuous, and players discount payoffs realized at time t inR+ by
the common discount rate r > . Each link in the network is governed by an independent Poisson
recognition process with the common rate λ > . Whenever link {ij} is recognized, players i and j
engage in a two-stage interaction that occurs in that instant:

. Stake selection stage: Players i and j simultaneously propose the stakes at which they should
interact. Player i’s proposal is ϕ̂ij ∈ R+; the stakes of the {ij} relationship are set to the
minimum of the two proposals. We use ϕ ∈ R+ as a generic stakes parameter when the
identities of the players along the link are unimportant.

. Action stage: Each player simultaneously chooses an action from A ≡ {work, shirk}. eir
stakes determine the payoffs; higher stakes increase the payoffs from mutual effort but
strengthen the temptation to shirk. Speciîcally, given stakes ϕ = min{ϕ̂ij, ϕ̂ji} they face
the prisoners’ dilemma in Figure .

Player j
Work Shirk

Player Work ϕ,ϕ −V(ϕ),T(ϕ)
i Shirk T(ϕ),−V(ϕ) ,

FûùćĄ÷ . e prisoners’ dilemma of stakes ϕ

e “temptation reward” T and the “victim’s penalty” V are smooth functions satisfying T() =
V() = , as well as V(ϕ) >  and T(ϕ) > ϕ for all ϕ > . us if the stakes are positive, shirking is





the strictly dominant action in the stage game for each player. roughout the paper we assume
that the temptation reward is increasing in the following manner:

Assumption  (Increasing Temptation). T is strictly increasing and strictly convex, with T ′() = 
and limϕ→∞ T ′(ϕ) =∞.

e important implication from Assumption  is that T(ϕ)/ϕ—the ratio of the payoffs from
shirking vs. working while one’s partner works—is close to  at low stakes but increases without
bound as the stakes increase. As a consequence, the players require proportionally stronger in-
centives to work at higher stakes. We use the speciîcation T(ϕ) = ϕ + ϕ in examples. Allowing
players to set the stakes of their relationships is a key feature of our framework, on which we
comment in Section .

For some of our results, we restrict attention to prisoners’ dilemmas in which the incremental
gain from working in the stage game is higher when one’s partner works: this is a condition of
supermodularity on the stage game, also referred to as strategic complementarity.

Deînition . e stage game satisîes strategic complementarity if V(ϕ) > T(ϕ)−ϕ for all ϕ > .

Monitoring and equilibrium Monitoring is pairwise: as play unfolds, each player observes
only what transpires along his own links, and observes neither the meeting times nor the behav-
ior along any other links. Each meeting between two players is an interaction, characterized by
the link {ij} that was recognized, the time t at which it was recognized, the stakes (ϕ̂ij, ϕ̂ji) that
players i and j proposed in the stake selection stage, and the actions (aij,aji) that they chose in
the action stage. For a player i, when one of his links is recognized, his private history hti is an
ordered list of all his interactions up to (but not including) time t, along with the identity of the
partner he is interacting with at time t. We denote the set of player i’s private histories ending
with a recognition of link {ij} at time t as Ht

ij, and write Hij ≡ ⋃t∈[,∞)Ht
ij, and Hi ≡ ⋃j∈Ni Hij.

A (behavior) strategy for player i is a function σi = (σS
i , σ

A
i ) such that σS

i ∶ Hi → ∆[,∞)
is his stake-selection strategy and σA

i ∶ Hi × R
+ → ∆A is his action strategy. We study weak

perfect Bayesian equilibria: each player’s strategy is sequentially rational given a belief system
constructed by Bayesian updating. We restrict attention to equilibria that are stationary on the
equilibrium path: along each link, the partners’ choices lead to the same distribution of stakes
and actions at each of their interactions along the equilibrium path.

Since player i acts only when meeting a partner, there is no need to deîne his private history at any other times.
Also, since at most one link is ever recognized at a time (almost surely), we do not deîne histories for simultaneous
meetings.





Deînition . A strategy proîle σ is stationary if for every {ij} ∈ G

. there exists σS
ij ∈∆[,∞) such that σS

i (h) = σS
ij for every equilibrium path history h in Hij;

. there exists σA
ij ∶R


+ →∆A such that σA

i (h, ϕ̂ij, ϕ̂ji) = σA
ij (ϕ̂ij, ϕ̂ji) for every equilibrium path

history h in Hij and proposals (ϕ̂ij, ϕ̂ji) in Supp(σS
ij) × Supp(σS

ji).

roughout our analysis, we restrict attention to stationary equilibria; henceforth, we refer
to them as equilibria. is is a restriction on equilibria (the importance of which we describe in
Section  after presenting our results) but not on the set of feasible deviations for a player. For
some of our efficiency results, it is useful to distinguish a particular class of equilibria that is often
focal in applications: those in which players work on the equilibrium path.

Deînition . A stationary strategy proîle σ is amutual effort proîle if σA
ij (ϕ̂ij, ϕ̂ji) assigns prob-

ability  to work for all (ϕ̂ij, ϕ̂ji) in Supp(σS
ij) × Supp(σS

ji).

In comparing strategy proîles, we say that a strategy proîle σ Pareto dominates another strat-
egy proîle σ̃ if no player is worse off with σ and at least one player is strictly better off. e value
of a strategy proîle is the utilitarian average of players’ expected payoffs that it delivers on the
path of play. Two strategy proîles are outcome equivalent if their on-path behaviors coincide;
they are distinct otherwise. ey are payoff equivalent if they yield identical expected payoffs to
each player.

All proofs for the main results (“theorems”) are collected in Appendix A; proofs for other
results (“propositions”) are in Appendix B.

 An Example

We begin with a simple example that highlights the essence of our approach. Consider a society
in which each of Ann, Bob, and Carol is connected to the other two players. For this illustration,
we suppose that T(ϕ) = ϕ + ϕ, and restrict attention to equilibria in which all pairs coordinate
on the same stakes at every equilibrium path history.

Bilateral enforcement: Consider the benchmark of bilateral strategies, in which behavior is
strategically independent across links. Effectively, each pair plays an inînitely repeated prisoners’
dilemma in isolation. Nash reversion is an optimal punishment in this class of strategies: consider
strategies in which both players in a partnership work if and only if neither of them has ever





Ann

Carol

Bob

FûùćĄ÷ . A triangle network

deviated. Under these strategies, when Ann meets Bob, her incentive constraint to work along
the equilibrium path is

ϕ + ϕ ≤ ϕ + ∫
∞


e−rtλϕdt.

e highest stakes at which working is incentive compatible is λ
r .

Instantaneous publicmonitoring: In contrast to bilateral enforcement, suppose that everyone
in society observes all the meetings, stakes announcements, and actions along every link in real
time. en if Ann shirks on Bob, it immediately becomes common knowledge among Ann, Bob,
and Carol that continuation play is off the equilibrium path. In this alternative environment,
consider an equilibrium in which once anyone shirks, everyone subsequently shirks perpetually.
Ann’s incentive constraint when she meets Bob along the equilibrium path is:

ϕ + ϕ ≤ ϕ + ∫
∞


e−rtλϕdt.

e highest stakes at which working is incentive compatible are λ
r , doubling what is attainable

under bilateral enforcement. Ann is willing to cooperate with Bob at higher stakes because of
the immediate punishment that she receives from Carol if she shirks on Bob. is benchmark is
infeasible in our environment because each player observes only the activity along his or her own
links, so Carol cannot instantaneously learn that Ann should be punished.

Contagion strategies: In contagion strategies, a player works so long as all of his partners have
worked in the past; otherwise he shirks. Once Ann shirks on Bob, Bob will shirk on Carol at their
next interaction, and from then on Carol will shirk on both Ann and Bob. So Ann’s only chance





for further gain is to meet Carol before Carol becomes “infected.” According to her strategy, Ann
should then shirk in her next interactionwithCarol, so her cooperation phase incentive constraint
is

ϕ + ϕ + ∫
∞


e−rte−λtλe−λt(ϕ + ϕ)dt ≤ ϕ + ∫

∞


e−rtλϕdt.

Here, e−λtλ is the density of Ann’s îrst meeting with Carol, and e−λt is the probability that at that
îrst meeting Carol will not yet have met Bob. e highest stakes at which working is incentive
compatible are ( r+λr+λ)

λ
r , strictly greater than what is attainable under bilateral enforcement.

Wemust also verify that at these stakes the contagion phase incentive constraints are satisîed.
In particular, consider the scenario in which Bob has very recently observed Ann shirk, and now
Bob meets Carol. Bob is unsure whether Carol is “contagious” or not. If Carol is still in the
cooperation phase, then shirking yields Bob an immediate payoff of ϕ + ϕ rather than ϕ, but at
the cost of future payoffs. Proposition  shows that if the stakes are set to make the equilibrium
path incentive constraints bind, then Bob strictly prefers to shirk in all his future interactions once
one of his neighbors shirks, regardless of his beliefs. e same, of course, applies to Ann when
she meets Carol after having shirked on Bob.

We pause to describe how contagion exploits the strategic interdependence of networked re-
lationships. When Ann cheats Bob, she forfeits the opportunity to also cheat Carol if Bob should
meet Carol îrst. is uncertainty dampens hermotive to shirk and thereby enables her to cooper-
ate at higher stakes. is effect relies on both asynchronous interaction and cycles in the network.
Were behavior instead synchronous, Ann’s best deviation from the equilibrium path would be to
shirk on both Bob and Carol simultaneously, negating the usefulness of contagion. Similarly, if
the network were a tree in which Ann was linked to both Bob and Carol (so Bob and Carol were
not linked to each other), then no equilibrium could support mutual effort at stakes greater than
under bilateral enforcement—shirking on Bob would not cause Carol to suffer any consequences
in her relationship with Ann. A network must have cycles to transmit punishments.

Triangle vs. circles: Shorter cycles transmit punishment more quickly. To illustrate, consider a
society comprising n ≥  individuals connected in a circle. Under contagion strategies, after Ann
shirks on Bob, Bob will shirk on Carol, Carol will shirk on Dante, and the contagion will spread
around the circle. Ann’s only chance to capture another temptation reward is to meet her other

If Ann was the îrst to shirk, she may have shirked on Carol as well as Bob. Another possibility is that Carol was
the îrst to shirk, and Ann was spreading the contagion to Bob.





neighbor before he becomes contagious. We show that Ann’s incentive constraint is

ϕ + ϕ + (ϕ + ϕ)
n−
∑
z=
( λ

r + λ)
z
≤ ϕ + ∫

∞


e−rtλϕdt.

Evidently, Ann’s other neighbor is less likely to be contagious for greater n, and so the maximal
stakes on each link are attained for n = . At the same time, each player has the same degree
in the circle as in the triangle. erefore, if n is divisible by  then rearranging the network into
n
 triangles induces shorter indirect paths, and hence faster punishments, larger stakes, and higher
payoffs. is force pushes optimal network design towards cliques.

 Contagion

is section deînes contagion equilibria, analyzes their incentives both on and off the path of
play, and proves their existence and efficiency in symmetric networks.

While the focus of our paper is not on contagion, we describe it in detail for three reasons.
First, its structure elucidates the role of viscosity. Second, it offers a tractable approach to înding
an optimal equilibrium on symmetric networks, regardless of the discount factor. ird, the steps
that we use to establish the optimality of contagion on cliques play an important role later in our
main result (eorem ), which compares cliques to other networks. In Section ., we establish
that identical network comparisons emerge from social norms in which individuals communicate
and ostracize guilty players.

. Deînition and Incentives

A contagion strategy proîle can be represented by an automaton with two phases: cooperation
and contagion. A player starts off in the cooperation phase, in which she proposes on-path stakes
and works with all her partners. On the path of play, a cooperative player believes that all her
partners are also cooperative. Should one of her partners shirk or propose non-equilibrium stakes,
she switches permanently to the contagion phase. A contagious player propose the same stakes as
on the path of play, but shirks on all her partners. A “contagion proîle” is a strategy proîle inwhich
all players play contagion strategies; it is a stationary mutual effort proîle in pure strategies. In a
contagion proîle, any deviation from the path of play initiates a contagion that eventually causes
all cooperation within a network component to break down.

Formally, we denote byΦi = (ϕij)j∈Ni a proîle of stakes in all of player i’s relationships; we call





this an individual stakes proîle. We denote a collective stakes proîle by Φ = (Φi)i∈N. Each Φ is an
element of the subset of R∣G∣

+ in which ϕij = ϕji for all {ij} ∈ G; we denote this space by S .

Deînition . A strategy proîle σ is a contagion proîle if there exists a collective stakes proîleΦ,
such that for each link {ij} in G and each history h in Hij, player i plays according to which of the
two phases she is in:

. Cooperation phase: σS
i (h) = ϕij, and σA

i (h, ϕ̂ij, ϕ̂ji) = work if and only if ϕ̂ij = ϕ̂ji = ϕij.
. Contagion phase: σS

i (h) = ϕij, and σA
i (h, ϕ̂ij, ϕ̂ji) = shirk for all ϕ̂ij, ϕ̂ji.

Each player begins in the cooperation phase. If player i is in the cooperation phase at history h,
then she stays in the cooperation phase if and only if both players i and j announced stakes ϕij and
worked; otherwise, she transitions to the contagion phase. e contagion phase is absorbing.

.. Incentives in the cooperation phase

We begin our analysis of contagion proîles by describing incentives in the cooperation phase. As
illustrated by the difference between triangles and circles (Section ), the rate at which contagion
spreads determines the level of cooperation. When player i considers whether to shirk on link ij
along the path of play, she needs to predict whether she will meet her other neighbors before they
become infected; if contagion spreads quickly, she is not likely to do so.

Consider a contagion proîle with collective stakes proîle Φ. When link {ij} is recognized
at time t, if player i is in the cooperation phase then she must have an incentive to work. If she
shirks, let xijk(τ) be the probability that, from the perspective of time t, she assigns to player k
being cooperative at time t + τ . Now we can write her incentive constraint as:

T(ϕij) + ∑
k∈Ni/{j}

T(ϕik)∫
∞


e−rτλ xijk(τ)dτ ≤ ϕij + ∑

k∈Ni
∫
∞


e−rτλϕik dτ .

e right hand side of this inequality sums the payoff from mutual effort at time t + τ with the
discounted expected payoff from future cooperation. e îrst term on the left hand side is what
player i would earn immediately by shirking on player j, and the second term is what she would
expect to earn in the future by shirking on her other neighbors. To simplify the incentive con-
straint, we combine the effects of xijk, λ, and r on the left hand side into a single term, the ijk
viscosity factor Xijk ≡ ∫

∞
 e−rτλxijk(τ)dτ . In Section ., we show how to compute viscosity fac-

tors for arbitrary networks, but such computations are not yet needed. Viscosity factors simplify





the cooperation phase incentive constraint to

T(ϕij) + ∑
k∈Ni/{j}

T(ϕik)Xijk ≤ ϕij +
λ

r ∑k∈Ni

ϕik . (ICCoop
ij )

Let Ψij(G) ≡ {Φi ∈ R∣Ni∣
+ ∶ ICCoop

ij is satisîed} be the set of individual stakes proîles that satisfy
the above inequality, i.e., player i’s cooperation phase incentive constraint on link {ij}. Collective
stakes proîles associated with contagion equilibria must satisfy each player’s cooperation incen-
tive constraint on each link, and therefore any such collective stakes proîle is an element of

Ψ(G) ≡ {Φ ∈ S ∶ Φi ∈ Ψij(G) for every {ij} ∈ G} .

Denoting the interior of a Euclidean set X by intX , the following is true regarding these sets:

Lemma  (Convexity). For any network G, Ψ(G) has a non-empty interior and is convex. More-
over,Ψij(G) is strictly convex for every link {ij} in G; i.e., for every pair of individual stakes proîles
Φi and Φ′i in Ψij(G), if there exists a neighbor k in Ni such that ϕik ≠ ϕ′ik, then αΦi + ( − α)Φ′i ∈
intΨij(G) for any α ∈ (, ).

enotable property is strict convexity, which is a consequence of Assumption : becauseT is
strictly convex, for any ϕ ≠ ϕ′ and α ∈ (, ), it follows from Jensen’s inequality that αT(ϕ)+ (−
α)T(ϕ′) > T(αϕ+(−α)ϕ′). at is, player i’s incentives in the cooperation phase are slack along
all her links if her individual stakes proîle is a strictly convex combination of any two equilibrium
individual stakes proîles that give her different stakes along any one link.

.. Incentives in the contagion phase

We turn to incentives in the contagion phase. Let πi(M) be player i’s continuation value when
she believes that M ⊆ N is the set of contagious players. In a contagion proîle, if M is non-empty
then it must include player i. A sufficient condition for player i to prefer shirking is

ϕij + πi(M) ≤ T(ϕij) + πi(M ∪ {j}). (ICCont
ij )

If M ⊂ Ni ∪ {i}, then this inequality embodies the incentives that player i faces when she knows
(from her past history) that players in M are contagious, and believes that the remaining players
are cooperative. If ICCont

ij is satisîed, then player i prefers to shirk even if player j is not conta-





gious.

Workingwith contagion equilibria poses awell-known challenge (Kandori ; Ellison ):
if the reward for working far exceeds the punishment for shirking, then a contagious player may
prefer to delay infecting others and instead choose to work. We identify a class of contagion
equilibria that solves this problem:

Deînition . A contagion proîle is binding if ICCoop
ij holds with equality for each neighbor j in Ni,

for each player i in N.

e virtue of making incentives bind on the path of play is that contagious players have an
incentive to shirk. e logic is analogous to that of Lemma  of Ellison (): the marginal
gain from working is decreasing in the number of contagious players and so indifference on the
equilibrium path implies that a player strictly prefers to shirk off the equilibrium path.

Proposition . Every binding contagion proîle is an equilibrium.

Since a binding contagion proîle guarantees that each player has a strict incentive to shirk
off the equilibrium path regardless of her beliefs about what phases others are in, every binding
contagion proîle also satisîes additional constraints that would be imposed by reînements such
as perfect-extended Bayesian equilibrium (Fudenberg and Tirole ; Battigalli ).

. Existence and Efficiency on Symmetric Networks

In a symmetric network, all links are isomorphic to each other, so each player views each link
identically with respect to the network. While symmetric networks are special, their simplicity
offers a useful starting point to investigate the existence and efficiency of contagion.

A permutation of the players g ∶ N → N is a graph automorphism if link g({ij}) is in G for
each link {ij} in G. Graph automorphisms deîne symmetry:

Deînition . A network G is symmetric if for any two links {ij} and {kℓ} in G there exists a graph
automorphism g ∶ N→ N such that g(i) = k and g(j) = ℓ.

Generally, contagious players need not hold such optimistic beliefs about their partners, but beliefs that attribute
greater probability to others being contagious create a stronger incentive to shirk. Establishing incentives to shirk
under the most optimistic beliefs about others ensures that contagious behavior is incentive compatible for all beliefs.

When we apply a permutation g to an object containing player names, we mean to apply g to each player name
within it. For instance, g(ij) = g(i)g(j).





A symmetric network is necessarily regular; i.e., all non-isolated players have the same de-
gree. e convenience of symmetry is that it equates viscosity factors throughout the network.

Lemma . For any symmetric network G, there exist x ∶R+ → [, ] and X >  such that xijk(t) =
x(t) and X = Xijk for each pair of distinct neighbors j and k in Ni, for each player i in N.

We show that a binding contagion equilibrium exists and is efficient.

eorem . Any symmetric network G with degree d has a symmetric binding contagion equilib-
rium, σC, in which the collective stakes proîle is ΦC = (ϕC, . . . , ϕC), where ϕC solves

T(ϕ)
ϕ
=

 + dλ
r

 + (d − )X. ()

is equilibrium Pareto dominates every distinct mutual effort equilibrium. Moreover, if the stage
game satisîes strategic complementarity, no other equilibrium has a higher value.

e overarching intuition is simple: contagion strategies offer the harshest punishments, and
a binding contagion equilibrium should attain the highest payoffs available using contagion strate-
gies. Yet several subtleties arise, indicating that the correct intuition is not so straightforward.
Instead, an involved argument is needed. We sketch the logic below, and offered a detailed proof
in Section .:

. Lemma  shows that σC is the unique non-trivial binding contagion equilibrium.
. Lemma  shows that ΦC Pareto dominates all other collective stakes proîles in Ψ(G), in-

cluding those that are asymmetric. It is straightforward to see that ΦC Pareto dominates
any other symmetric collective stakes proîle, since all symmetric collective stakes proîles
are multiples of (, . . . , ). We use Lemma  to show that for any asymmetric collective
stakes proîle inΨ(G), there exists a symmetric collective stakes proîle thatmakes no player
worse off and satisîes all cooperation phase incentives with slack.

. Lemma  extends the conclusion to all mutual effort equilibria. e key step is to recog-
nize that a feasible deviation for any pure strategy mutual effort equilibrium is to shirk on
all of one’s partners without deviating in the stakes selection stage. Such a deviation is un-
proîtable if and only if the collective stakes proîle is in Ψ(G). We extend the argument

A non-empty symmetric network may contain isolated players. A stronger deînition imposing “vertex transitiv-
ity” could rule out isolated players, but would not otherwise affect our results.

A collective stakes proîle Φ is symmetric if ϕij = ϕkl for every pair of links {ij} and {kl} in G; otherwise it is
asymmetric.





to mixed strategy mutual effort equilibria using convexity and Jensen’s inequality. ese
arguments together establish our îrst efficiency result, relying only on Assumption .

. Lemmas – compare σC to equilibria in which players may shirk on the equilibrium path.
e argument involves appropriately aggregating the players’ utilities and incentive con-
straints. e key step shows that under strategic complementarity, if shirking occurs with
positive probability on the equilibrium path, then there exists a mutual effort proîle that
attains the same aggregate payoffs without increasing any player’s temptation to shirk. We
then show that the non-trivial binding contagion equilibrium attains at least as much value.

. Proof of eorem 

In this section, we describe the argument establishing eorem  in detail. While we discuss and
offer intuition for each lemma used below, formal proofs are relegated to Appendix A.

roughout this subsection, îx a symmetric network G. In a mutual effort proîle with col-
lective stakes proîle Φ, player i’s expected payoff is λ

r ∑j∈Ni ϕij. We say that a collective stakes
proîle Φ ≻PD Φ′ if a mutual effort proîle with collective stakes proîle Φ Pareto dominates one
with collective stakes proîle Φ′.

We îrst characterize the binding contagion equilibria.

Lemma . e only collective stakes proîles in S at which all cooperation phase incentive con-
straints bind are ΦC and (, . . . ,).

Henceforth we ignore the degenerate collective stakes proîle (, . . . ,), and refer to σC as
“the” binding contagion equilibrium. e following lemma compares its payoffs to all other con-
tagion proîles that satisfy incentives on the equilibrium path, i.e., those that are Nash equilibria.
It is straightforward to show that σC Pareto dominates all other symmetric contagion proîles,
since each player’s payoffs are increasing in the stakes and ΦC is the highest symmetric collective
stakes proîle in Ψ(G). We then use the convexity identiîed in Lemma  to prove that for any
asymmetric contagion proîle satisfying cooperation phase incentive constraints, there exists a
symmetric contagion proîle that makes no player worse off and makes at least one player better
off—without violating the cooperation phase incentive constraints.

Lemma . e binding contagion equilibrium σC Pareto dominates every other contagion proîle
that satisîes cooperation phase incentive constraints: ΦC ≻PD Φ for every Φ ∈ Ψ(G)/{ΦC}.

Weexpand the domain of comparison from contagion equilibria to all mutual effort equilibria.





Lemma . For every mutual effort equilibrium, there exists a payoff-equivalent contagion proîle
with collective stakes proîle Φ in Ψ(G). It follows that every mutual effort equilibrium that is
distinct from the binding contagion equilibrium σC is Pareto dominated by it.

e intuition is most straightforward for pure-strategy mutual effort equilibria. One feasible
deviation for player i is to shirk on every partner while announcing the stakes speciîed by the as-
sociated collective stakes proîle Φ. Since such a deviation must not be proîtable, her individual
stakes proîle in this pure strategy equilibrium,Φi, must satisfy ICCoop

ij for each of her links. us,
Φ is in Ψ(G) and can be supported by a contagion proîle. Extending the argument to mixed
strategy mutual effort equilibria (i.e., those in which the stakes in each relationship may be ran-
dom) requires averaging the equilibrium path stakes along each link; necessarily, a pure strategy
proîle with these averaged stakes delivers the same payoffs for each player along the path of play,
and Jensen’s inequality implies that the deviation has an even lower payoff.

We turn to the next part of the theorem that compares the values of equilibria to argue that
the non-trivial binding contagion equilibrium has the highest value. roughout the discussion
below, we îx an equilibrium σ and use the following steps to argue that the binding contagion
equilibrium σC yields at least as much value. Since σ is stationary (Deînition ), we can denote
by µS

ij the distribution of stakes that arises on link {ij} along the equilibrium path. For a link {ij}
let pwwij (ϕ) be the on-path probability of mutual effort when stakes ϕ are realized, let pwsij (ϕ) be
the on path probability that player i works while player j shirks, and let pssij (ϕ) be the on-path
probability of mutual shirking. Let uij be player i’s expected equilibrium stage game payoff when
link {ij} is recognized, and let wij be her payoff from following the stake proposal strategy but
deviating at the action stage to shirking regardless of the realized stakes; formally,

uij ≡ ∫
∞


(pwwij (ϕ)ϕ + pwsji (ϕ)T(ϕ) − pwsij (ϕ)V(ϕ)) dµS

ij,

wij ≡ ∫
∞


T(ϕ) (pwwij (ϕ) + pwsji (ϕ)) dµS

ij.

In these terms, the “total utility” of equilibrium σ is

U(σ) ≡ λ

r ∑i∈N
∑
j∈Ni

uij =
λ

r ∑{ij}∈G
(uij + uji).

Our îrst claim is to argue that a counterpart of ICCoop
ij holds for every equilibrium σ.





Lemma . For every equilibrium σ, every player i in N, and every neighbor j in Ni,

wij + ∑
k∈Ni/{j}

Xwik ≤ uij +
λ

r ∑k∈Ni

uik. ()

e proof of Lemma  generalizes that of Lemma : one possible deviation for player i is to
maintain the equilibrium path proposal strategies but to shirk on every partner. Since a contagion
equilibrium has the lowest viscosity of any equilibrium, the left-hand side is a lower bound for the
payoffs from this deviation.

e îrst step is to average the incentive constraints across links. We describe the “total devi-
ation utility” by

W(σ) =∑
i∈N
∫
∞


e−rte−dλtλ∑

j∈Ni

(wij + ∑
k∈Ni/{j}

Xwik)dt.

Observe that

U(σ) =∑
i∈N
∫
∞


e−rte−dλtλ∑

j∈Ni

(uij +
λ

r ∑k∈Ni

uik)dt ≥W(σ),

where the equality follows from algebra and the inequality follows from ().
Our second step is to eliminate shirking on the equilibrium path. We construct a mixed-

strategymutual effort proîle that delivers asmuch value asσ and satisîes an analogous constraint.

Lemma . If the stage game satisîes strategic complementarity, then for every equilibrium σ, there
exists a mixed strategy mutual effort proîle σ̃ such that U(σ̃) ≥ U(σ) ≥W(σ) ≥W(σ̃).

To convert σ into a mutual effort proîle σ̃, replace every occurrence of work-shirk on the
equilibrium path at stakes ϕ with mutual effort at stakes

f (ϕ) =max{, T(ϕ) −V(ϕ) } .

By construction, action proîle (work,work) at stakes f (ϕ) yields the same sumof payoffs as action
proîle (work, shirk) at stakes ϕ. Moreover, strict convexity of T (Assumption ) and strategic
complementarity (Deînition ) together guarantee that there is less total deviation utility in σ̃

than in σ. is is the only step that uses strategic complementarity.
Because σ̃ may not be an equilibrium, we cannot yet apply Lemma . Nevertheless, analogous

arguments permit a comparison between the total utility of σ̃ and that of the non-trivial binding





contagion equilibrium σC.

Lemma . For any mixed-strategy mutual effort proîle σ̃, if U(σ̃) ≥W(σ̃) then U(σ̃) ≤ U(σC).

e argument constructs a symmetric contagion proîle that attains the same value as σ̃ while
satisfying the condition that total utility must exceed total deviation utility, and then shows that
its stakes cannot be greater than ϕC. Together, these results imply that the non-trivial binding
contagion equilibrium has at least as high a value.

 Comparing Networks

Conventional wisdom holds that network architecture is important for cooperation that can be
sustained in bilateral relationships, and existing studies have shed light on numerous important
factors that contribute to cooperation. e critical friction in our framework is that players them-
selves are the only ones to observe their own relationships and our study of how a network may
overcome this challenge focuses attention on a new determinant of cooperation, which we label
as viscosity.

Section . describes viscosity, constructs an algorithm to compute it, and compares the vis-
cosity of cliques to that of networks with a weakly lower maximal degree. Section . combines
this result with eorem  to compare binding contagion equilibria on cliques to equilibria on
other networks. Section . characterizes networks that optimally balance the beneîts from co-
operation and the costs of linking.

. e Viscosity of Networks

Viscosity measures how quickly behavior or information spreads in a network, as a function of
players’ patience. When player i shirks on player j, her consideration is the extent to which she can
take advantage of player k prior to player k being infected. Unlike measures of propagation that
would be used to study the spread of infectious disease or ideas, for example, a player’s concern
here is not how quickly the contagion spreads globally across the network, but rather the speed
with which it spreads—potentially via long and winding paths—back to her local neighborhood.

In a study of public goods provision, Wolitzky () develops a notion of “effective contagiousness” that offers an
instructive comparison. Effective contagiousness measures how quickly the number of players who are contagious is
expected to grow, following a deviation. at is, effective contagiousness is ameasure of the global spread of contagion.
Such a measure is appropriate to public goods environments because, in principle, all the players in the network can
punish the deviator. Similarly, Golub and Jackson () offer a measure of the speed of diffusion in their analysis of
directed contagion processes on large random networks.





Viscosity is a measure of propagation that differs from those studied in other mechanisms of
diffusion and depends in a subtle way on the structure of the network.

We develop some notation to describe paths by which contagion spreads. For a path ζ , let Zζ

be its length, and for every z ∈ {, ...,Zζ}, let ζ(z) be the zth node in the path. For a set of playersM
such that k ∉M, we consider paths that begin in M, end at k, and do not travel through M:

sk(M) ≡ {ζ ∶ ζ() ∈M, ζ(Zζ) = k, and ζ(z) ∉M for every z > } .

e set sk(M) contains all paths through which the contagion spreads from M to player k. We
count the number of paths that infect a player outside M on the path to player k:

s̃k(M) = {i′j′ ∈ G ∶ i′ ∈M, ζ() = j′ for some ζ ∈ sk(M)} .

When the set of contagion players is M, one more player in the direction of player k is infected at
the rate ∣̃sk(M)∣λ. Viscosity is computed recursively as Xijk = χik({i, j}), and for every M,

χik(M) = ∫
∞


e−rte−∣̃sk(M)∣λt

⎛
⎝
λ1(k ∉M) + ∑

i′j′∈̃sk(M)
λχik(M ∪ {j′})

⎞
⎠
dt

= λ

r + ∣̃sk(M)∣λ
⎛
⎝
1(k ∉M) + ∑

i′j′∈̃sk(M)
χik(M ∪ {j′})

⎞
⎠
.

()

e term outside brackets represents the expected delay until a subsequent player becomes in-
fected. e îrst term in brackets reïects that contagion may spread by means of player imeeting
player k; the second term reïects that when contagion spreads to player j′ the set of contagious
players becomes M ∪ {j′}. e recursive formulation highlights that viscosity depends only on
λ/r and G. e example below calculates viscosity for simple four-player networks.

Example . Consider the square network in Figure a, and suppose that λ/r = . Suppose that
player  has deviated on  and is computing the discounted probability of meeting player  îrst.
By (), above,

X =
λ

r + λ ( +
λ

r + λ) =
λ

r + λ + (
λ

r + λ)

= 

 .

After player  shirks on player , λ
r+λ is the discounted probability that link {} is recognized

before link {}; conditional on link {} meeting îrst, ( λ
r+λ)

 is the the probability link {} is
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recognized before link {}.
Adding the diagonal link {} generates the network in Figure b; this link reduces viscosity

throughout the network because there is an additional path by which information propagates. On
this network we calculate the viscosity factors as follows:

X = X = X =
λ

r + λ ( +
λ

r + λ)

= 

 ,

X =
λ

r + λ ( +  λ

r + λ)

= 

 .

Completing the network by adding link {} to construct the clique of degree  (Figure c) further
reduces viscosity, but by a smaller margin:

X =
λ

r + λ ( +
λ

r + λ)

= 

 .

While the above algorithm does not generate a general closed-form solution, it simpliîes for
the cases of trees and cliques, which yield the lower and upper bounds, respectively, on viscosity
in all networks. On a tree—a network that lacks any cycles—the viscosity factor Xijk is simply λ

r+λ ,
because the only way for player k to be infected by {i, j} is when link {ik} is recognized. Indeed,
this is the greatest viscosity factor possible among a connected triple in any network.

Proposition . For every network G and every pair of links {ij},{ik} in G, Xijk ≤ λ
λ+r . Moreover,

Xijk < λ
λ+r if and only if G contains a cycle that includes both {ij} and {ik}.

In a clique, by contrast, every person in player i’s component is a neighbor. We call a com-





pletely connected network in which there are d +  players the clique of degree d; we denote such
a network by G (d). For a clique, we can then dispense with proceeding recursively through the
graph and instead consider only the number of infected neighbors in the contagion phase. is
simpliîes the viscosity factor to yield a closed form.

Proposition . For the clique of degree d, and every pair of links {ij} and {ik},

Xijk = X(d) ≡


d − 
d
∑
m′=

⎛
⎝


m′

m′

∏
m=

λm(d −m + )
r + λm(d −m + )

⎞
⎠
.

ough it may not be obvious from the expression above, larger cliques are less viscous than
smaller cliques, the logic being that a larger clique presents more opportunities for the contagion
to diffuse. Moreover, a clique of degree d is the least viscous among all networks in which no
player has degree higher than d.

eorem . If the maximal degree in network G is no more than d, then for every pair of links
{ij},{ik} in G,

Xijk ≥ X(d).

e inequality is strict if and only if the component of G that contains players i, j, and k is not a
clique of degree d.

is result is intuitive insofar as a clique provides the shortest possible paths by which con-
tagion can spread from player j to player k before player i meets player k. Since closed-form
computation of viscosity factors for arbitrary networks is infeasible, the proof uses a more ele-
mentary coupling argument, which, for every path in G that infects player k before link {ik} is
recognized, constructs a shorter path inG (d) that serves the same purpose. We should highlight
that ifG is a regular network of degree d, it has as many links per player asG (d) and so the lower
viscosity emerges from the network architecture rather than by increasing link density.

. Which Networks Support the Greatest Cooperation?

In this section, we combine the insights from analyzing the viscosity of a network with our char-
acterization of contagion on symmetric networks to identify which networks support the most
cooperation. A major challenge in ranking networks is that while contagion exists and is optimal

We thank Ben Golub for encouraging this method of proof.





on symmetric networks, it is difficult to know which equilibria exist and are efficient on asym-
metric networks for an arbitrary discount rate. From this perspective, it might seem infeasible
to compare contagion on symmetric networks with an uncharacterized efficient equilibrium on
asymmetric networks.

Yet, evenwithout computing the set of equilibriumpayoffs on asymmetric networks, we know
one constraint that limits every equilibriumon every network: no player can do strictly better than
her equilibrium payoff by shirking perpetually. Perhaps surprisingly, this simple fact is all that is
needed to compare contagion on the clique of degree d with every equilibrium on any network
in which no player has more than d partners.

We denote the stakes on each link in the (non-trivial) binding contagion equilibrium on the
clique G (d) by ϕ(d); the expected payoff for each player in this equilibrium is u(d) ≡ (dλr )ϕ(d).

eorem . Consider a network G in which the maximal degree is no more than d.

(a) In every mutual effort equilibrium, no player attains a payoff that exceeds u(d); moreover,
any player in a component of G that is not G (d) has a strictly lower payoff.

(b) If the stage game satisîes strategic complementarity, then the value of every equilibrium is
less than u(d), and strictly less if at least one component of G is not G (d).

Cliques maximize the level of cooperation because they are the least viscous. If we restrict
attention to mutual effort equilibria on arbitrary networks, then the clique “Pareto dominates”
every other network that has the same maximal degree: each player in the clique is at least as
well off, and some are strictly better off. Our proof actually establishes a stronger property than
that stated above: each player obtains greater payoffs even on a per-link basis in the contagion
equilibrium in the clique than in any distinct equilibrium on any network.

If we allow for equilibria in which players shirk on the equilibrium path, then non-clique
networks are not necessarily Pareo dominated. Nonetheless, if the game satisîes strategic com-
plementarity then the binding contagion equilibrium on the clique generates the highest average

is comparison ignores any remainder that might arise if the population of players is not divisible by d + .
Formally, we could make Pareto comparisons between two networks by replicating them both to form two “replica
networks,” each containing the least common multiple of the original populations.

One might conjecture an even stronger result: adding a link to any arbitrary network should increase the level
of cooperation attainable on each link in equilibrium, since each new link makes the network less viscous. While this
is true for Nash equilibria, in which incentive constraints off the path of play are ignored, it need not hold for perfect
Bayesian equilibria, in which the addition of links inïuences incentives both on and off the path of play. Adding a
link may relax on-path incentives but it may impose more severe off-path constraints, and thereby shrink the set of
attainable per-link payoffs.





value. As in the case of mutual effort equilibria, we further prove that the contagion equilibrium
on the clique has a higher value per link than any other equilibrium on any other network.

e proof builds on ideas from our previous results. For simplicity, consider a pure strategy
mutual effort equilibrium σ on an arbitrary network G of maximal degree d, and suppose that
player i’s component is not a clique of degree d. at player i would not do strictly better by
perpetually shirking generates the incentive constraint ICCoop

ij (on p. ) in which the viscosityXijk
corresponds to that ofG. Replacing this viscosity with that of the clique, X(d), introduces greater
slack into the incentive constraint, since by eorem , X(d) < Xijk. Put differently, the clique
induces faster punishment. We use this property to show that there exists an individual stakes
proîle for the clique that attains the same payoffs for player i as equilibrium σ and satisîes the
cooperation phase incentives on the clique. us, as argued in eorem , the binding contagion
equilibrium of the clique must generate higher payoffs for player i. e comparison of contagion
to equilibria onG in which players shirk on the equilibrium path makes parallel observations, and
builds on ideas from Lemmas – to show that the binding contagion equilibrium on the clique
must generate a higher value.

e conclusion to draw fromeorem  is that regardless of players’ patience or the frequency
with which they interact, the clique of degree d is the optimal network among all networks in
which the maximal degree is d. us, if the population is divisible by d+, organizing society into
cliques of degree d is a better social architecture than any other in which the maximal degree is d.

. Balancing the Beneîts and Costs of Linking

Establishing relationships can be costly, so a network should optimally balance the beneîts of
linking with its costs. is section characterizes networks that achieve the optimal tradeoff.

We model linking costs in a reduced-form manner: if player i has di links, then she pays the
linking cost c(di) at time . A player’s net payoff is the sum of her expected equilibrium payoffs
from interactions (henceforth interaction payoffs)minus the linking costs that she incurs at time .
An equilibrium’s net value is the average net payoff in society.

e linking cost function c is non-decreasing and, as a normalization, satisîes c() = . We
study linking costs that belong in one of two categories below: for d ≥ , linking costs are

. Concave if c(d)/d is non-increasing.
. Strictly convex if c(d)/d is strictly increasing.

A special case of concave linking costs is that in which linking costs are linear.





ere are two beneîts of forming a link: it creates a new relationship, and it indirectly bene-
îts other relationships if it completes a cycle (ignoring potential off-path complications). e îrst
beneît is internalized by the partners who form the link, while the latter is a positive externality.
Since the marginal linking cost is either ïat or decreasing when c(⋅) is concave, an extreme solu-
tion dominates in which if it is worthwhile to link to anyone then it is better to link to everyone.
Since it is symmetric, the complete network has a binding contagion equilibrium inwhich off-path
incentives are guaranteed. In this equilibrium, each player earns a net payoff of u(n−)−c(n−);
by symmetry this is also the equilibrium’s net value.

eorem . Suppose that linking costs are concave.

. Consider any mutual effort equilibrium on any incomplete network. If a player has a non-
negative net payoff, then her net payoff is strictly less than u(n − ) − c(n − ).

. Consider any equilibrium on any incomplete network, and suppose the stage game satisîes
strategic complementarity. If the equilibrium’s net value is non-negative, then its net value
is strictly less than u(n − ) − c(n − ).

us the complete network Pareto dominates other networks if players follow a mutual effort
equilibrium, and is utilitarian optimal even when shirking is allowed on the equilibrium path.

Comparisons across networks are more subtle if c(⋅) is convex. Now a player may not înd it
in her own interest to link to all other players, but others always beneît from her doing so. Since
a player’s preference is no longer aligned with others’ preferences, we focus on Pareto efficiency,
and prove that the “optimal” clique is Pareto efficient: if linking costs are sufficiently convex,
there exists some (generically unique) optimal clique G (d∗) such that d∗ uniquely maximizes
u(d) − c(d). If there is no interior optimum, then the optimal clique is the complete network.

eorem . Suppose that linking costs are strictly convex. For every network G and every mutual
effort equilibrium, if there exists a player whose net payoff is strictly greater than u(d∗) − c(d∗),
then there exists another player whose net payoff is strictly less than u(d∗) − c(d∗).

e logic is straightforward: consider a networkG in which there exists a component in which
some player earns a strictly higher net payoff than u(d∗) − c(d∗). Necessarily, this component
cannot be a clique since by deînition no clique obtains a net value greater than u(d∗) − c(d∗).
Within this component, consider the player with the highest degree, d′. By eorem , her inter-
action payoff is strictly less than u(d′), the payoff she would obtain in a clique of her own degree,





G (d′); meanwhile, her linking costs in G and G (d′) are identical. It follows that her net payoff is
strictly less than u(d′) − c(d′).

Stronger comparisons emerge when contrasting contagion on cliques to smaller classes of
networks. Consider the class of networks that are regular, i.e., those in which all players share the
same degree. Since the linking costs on a regular network are identical to those on the clique with
the same degree, eorem  has a direct corollary.

Corollary . No mutual effort equilibrium on any regular network attains payoffs that exceed
u(d∗) − c(d∗). Moreover, if the stage game satisîes strategic complementarity, no equilibrium on
any regular network attains a higher value than u(d∗) − c(d∗).

While our analysis of this case is limited to either mutual effort equilibria or regular networks,
it has direct implications for the behavior we might expect on potentially efficient irregular net-
works: if there is a network in which the player with the highest degree has payoffs that strictly
exceed u(d∗) − c(d∗), then her payoffs are incompatible with her having to work in every rela-
tionship on the equilibrium path. If the stage game satisîes strategic complementarity, then she
must be gaining a larger share of the surplus in one of her relationships by being permitted to
shirk on the equilibrium path.

. An Alternative Social Norm with Communication

So far, we have compared networks using repeated game equilibria that do not rely upon explicit
communication. As with the prior literature, we use contagion to characterize an optimal social
norm for which the off-path propagation of punishment is incentive compatible. e same net-
work comparisons also apply for alternative enforcementmechanisms considered by the literature
(e.g. Dixit ), in which word of mouth communication plays an important role.

Speciîcally, suppose that which whenever a pair meets, the two îrst exchange truthful mes-
sages that describe their prior histories before setting stakes andmaking their effort choices. Con-
sider any ostracism norm in which innocent players punish guilty players, but not others who are
innocent. When a player shirks, her partner truthfully communicates the news to others, and this
information percolates through the network. As in contagion, a guilty player’s only opportunity
for further gain is to meet her other partners before they learn of her guilt. Indeed, a player’s
incentive to work under such a social norm is identical to that under contagion: when facing an
individual stakes proîle Φi, player i’s incentives to work on {ij} are captured exactly by ICCoop

ij
on p. . us our network comparison results hold for for any ostracism social norm in which





innocent players are assumed to communicate truthfully.

 Applications

While we have framed our results in the context of a prisoners’ dilemma with variable stakes, our
îndings are relevant for other settings that feature relationships with moral hazard.

. Favor Exchange

Prior to the advent of modern market institutions, one prominent role for community enforce-
ment and social capital was to ensure that players could rely on reciprocity norms to ensure that
they would perform favors for each other. e role of social networks in a trading favors context
has been emphasized by earlier sociological analyses (e.g. Coleman ), and studied in recent
works in economics (e.g. Möbius ; Jackson, Rodriguez-Barraquer, and Tan ).

Consider a network G of connected players in N. If players i and j are connected, then with
Poisson density λ player i will be called upon to do a favor for player j. When player i per-
forms a favor of level ϕ >  for player j, she incurs a cost of C(ϕ) that satisîes C′() =  and
limϕ→∞C′(ϕ) =∞; player j’s beneît from this favor is simply ϕ. As before, players i and j are the
only ones to observe what transpires in their bilateral relationship, and all players share a common
discount rate r. We restrict attention to equilibria that are stationary on the equilibrium path.

Unlike the model of Section , efforts along each link are asynchronous, triggered only when
a player is called upon to help her partner. e optimal favor, ϕ∗, solves C′(ϕ) = ; were favors
contractible, such favors could be enforced without community involvement. Our interest is in
studying the extent to which favor exchanges can be self-enforcing in a networked community.

In a pure strategy equilibrium, we denote the favor performed by player i for player j by ϕij,
and let Φ = (ϕij, ϕji){ij}∈G be the proîle of equilibrium path favors. In a contagion equilibrium,
a player stops doing favors for all her partners when she observes that any of her partners has
failed to do a favor for her. us, when player i fails to perform a favor for partner j, she can count
on partner k to perform favors for her only so long as he has not observed any deviation from

Our companion paper, Ali and Miller (), studies ostracism equilibria in which truthful communication must
be incentive compatible.

In other words, we look at equilibria in which for every on-path history, whenever player i is called upon to do a
favor for player j, her randomization over favor sizes is independent of the history.

With asynchronous efforts, players no longer need to agree explicitly to the stakes of their interaction obviating
the stake selection stage in Section .





on-path behavior. Let x⃗ijk be the ijk viscosity factor, analogous to xijk; then the equilibrium path
incentive constraint is

∑
k∈Ni/{j}

ϕki∫
∞


e−rτ x⃗ijk(τ)λdτ ≤ −C(ϕij) +

λ

r ∑k∈Ni

(ϕki −C(ϕik)) . (I⃗Cij)

is incentive constraint is similar to the cooperation phase incentive of the prisoners’ dilemma
(ICCoop

ij on p. ). Let X⃗ijk ≡ ∫
∞
 e−rτ x⃗ijk(τ) denote the viscosity factor of favor exchanges.

Proposition . For every network G, the viscosity factor in favor exchanges is identical to that of
the basic model.

is similarity permits us to port results to this application, although the different setting
generates a subtle variation on eorem .

Proposition . In the favor exchange model, every symmetric network G with degree d has a sym-
metric binding contagion equilibrium in which the favors performed on each link, ϕF, solve

C(ϕ)
ϕ
= dλ − r(d − )X

 + dλ . ()

If ϕF < ϕ∗, this equilibrium has higher value than every distinct equilibrium on G.

Importantly, the solution to () is decreasing in the viscosity factor, so networks that have
lower viscosity increase the volume of favors and the payoffs of each player.

Proposition . In the favor exchange model, so long as ϕF < ϕ∗, the binding contagion equilibrium
on the clique of degree d has a higher value than every distinct equilibrium on every network with
maximal degree no more than d.

We omit the proof of this result because it is virtually identical to that of eorem . As
in the basic model, the friction of pairwise monitoring is best overcome by a network with low
viscosity, so cliques foster the highest level of favor provision. As in our discussion in Section .,
these network comparisons are not limited to a contagion equilibrium: ostracism equilibria would
generate the same network comparison.

Within the context of informal risk-sharing, the literature has documented patterns that de-
scribe howmore risk-sharing is associated with lower viscosity. Udry (, ) and Fafchamps
and Lund () describe how a large fraction of risk-sharing is done by within the same village
or within kinship groups despite the potential diversiîcation gains of sharing risk more broadly.





Jackson, Rodriguez-Barraquer, and Tan () înd that favor exchange networks in southern In-
dia have a high fraction of links in which the linked players have a common neighbor, thereby
fostering short indirect paths.

. Enforcing Trade in Networked Markets

In many market contexts, traders rely on informal enforcement mechanisms to support coopera-
tive behavior. While many have emphasized the importance of networks in the informal enforce-
ment of commerce (e.g. Greif ;McMillan andWoodruff ; Banerjee andDuïo ; Dixit
), there are few models of self-enforcing trading networks. is section applies our frame-
work to two-sided markets in which trade emerges from each buyer’s and seller’s consideration
of future trading opportunities.

In a networked market, there is a groupN B = {, ...,b} of buyers and a groupN S = {, ..., s}
of sellers. Every link in the network connects a buyer to a seller. For notational convenience,
deîne the networked market G⃗ to be a subset ofN B ×N S; i.e., treat every link as being directed
from a buyer to a seller, and denote a link (b, s) as simply bs. We let Nb be the set of sellers to
which a buyer b is connected and Ns the set of buyers that are connected to seller s.

When a link is selected, a buyer and seller can trade: the seller chooses what quality (or quan-
tity) q of good to produce, and the buyer chooses a payment p in exchange for the good. We call
the product quality of trade that arises on the equilibrium path the “level of trade,” and interpret
q =  as the absence of trade. eir resulting payoffs are q − p for the buyer and p − C(q) for
the seller, where C(⋅) is a strictly increasing, strictly convex cost function, with C′() =  and
limq→∞C′(q) =∞.

In each interaction, the buyer and seller make choices simultaneously. e buyer has an
incentive to renege on making the payment while the seller has an incentive to produce a low
quality good. Were external enforcement available, the buyer and seller could write a contract
that forces the seller to produce at the quality q∗ that solves C′(q) = , and forces the buyer to
make a payment in [C(q∗),q∗]. We study trading relations that rely purely on self-enforcement.

Ahn and Suominen () study a monopolist îrm facing a sequence of consumers who observe their neighbors’
past interactionswith the îrm. Deb andGonzález-Díaz () study the product choice gamewith anonymous random
matching, and construct subtle dynamic equilibria in which the community builds trust over time. Fainmesser ()
studies a variant of the product choice game in which the tension is a capacity constraint, and characterizes networks
that foster the greatest cooperation under the assumption that all enforcement is bilateral; Fainmesser and Goldberg
() expand the analysis to community enforcement, under the assumption that information diffuses exogenously.

E.g., even if the seller must deliver the product before the buyer pays, the buyer cannot verify its quality before
paying.





As before, we focus on equilibria in which behavior on the equilibrium path is stationary.
In a pure strategy equilibrium, let (qbs,pbs)bs∈G⃗ be the proîle of trades on the equilibrium

path. In a contagion equilibrium, trade continues so long as no player has deviated in the past,
but once a player deviates, every infected player deviates and so market cooperation unravels. For
a buyer b and two sellers s and s′, we let xbss′ denote the analogue of xijk: if players b and s are
infected at time , xbss′(τ) is the probability that s′ is not infected; we denote the analogue for a
seller s and two buyers b and b′ by xsbb′ . e equilibrium path incentive constraints for a buyer b
and seller s are

qbs + ∑
s′∈Nb/{s}

qbs′ ∫
∞


e−rτxbss′(τ)λdτ ≤ qbs − pbs +

λ

r ∑s′∈Nb

(qbs′ − pbs′) , (I⃗Cbs)

pbs + ∑
b′∈Ns/{b}

pbs′ ∫
∞


e−rτxsbb′(τ)λdτ ≤ pbs −C(qbs) +

λ

r ∑b′∈Ns

(pb′s −C(qb′s)) . (I⃗Csb)

ese constraints bound the level of trade, as well as how much value can be extracted from each
buyer through prices. Since the computation of viscosity is unaffected by whether the network is
directed or undirected, the viscosity factors are identical to those of the undirected representation
of the network. However, the bipartite structure demands a different notion of symmetry:

Deînition . A networked market G⃗ ⊂ N B ×N S is symmetric on each side if for any two links
bs,b′s′ ∈ G⃗ there exists a directed graph automorphism f such that f(s) = s′ and f(b) = b′.

If the networked market is symmetric on each side (“symmetric” for short), then analogous to
Lemma , there exists a common viscosity factor on each side—XB for the buyers and XS for the
sellers. We let dB and dS denote the degrees of the buyers and sellers, respectively, in a symmetric
networked market. e analogue of eorem  is:

Proposition . Every symmetric networked market G⃗ has a symmetric binding contagion equilib-
rium, in which the quality of trade, q⃗, on each link solves

C(q)
q = (λdS − r(dS − )XS

r + λdS
)(λdB − r(dB − )XB

r + λdB
) , ()

and the price paid by each buyer on the equilibrium path is

p⃗ = (λdB − r(dB − )XB
r + λdB

) q⃗.

A directed graph automorphism is a bijection f ∶ N B ∪N S → N B ∪N S such that if bs ∈ G⃗, then f(b)f(s) ∈ G⃗.





is equilibrium generates a higher average level of trade than every distinct equilibrium. Moreover,
if q⃗ < q∗, then this equilibrium generates higher value than any other equilibrium.

It follows that decreasing the viscosity on either the buyers’ side or the sellers’ side increases
not only the level of trade, but also equilibrium prices. Interestingly, decreasing the buyer-side
viscosity XB decreases (q⃗− p⃗)/q⃗, which measures the fraction of the buyer’s payoff that she keeps
in each trade. With lower viscosity, she can be counted on to pay more to each seller without
violating her cooperation phase incentive constraint. Analogously, each seller charges a lower
“markup,” p⃗−C(q⃗)

C(q⃗) , when the seller-side viscosity XS is lower, because lower viscosity reduces his
temptation to skimp on quality.

We now consider which networked market maximizes the social gains from trade. e bipar-
tite clique of degrees (dB,dS) is a bipartite network if there are dB sellers and dS buyers, and each
buyer is connected to each seller; we denote it byG (dB,dS), its buyer side viscosity byXB(dB,dS),
its seller side viscosity byXS(dB,dS), and the level of trade in its binding contagion equilibrium by
q(dB,dS). We prove the analogue of eorem  and eorem . (Although a different coupling
argument is needed, the overall proof is similar.)

Proposition . Consider a bipartite networked market G⃗ in which no seller is connected to more
than dB buyers, and no buyer is connected to more than dS sellers. e lowest viscosity factor for
each side is at least that of the bipartite clique of degrees (dB,dS); i.e., for every triple of links
bs,b′s,bs′ in G⃗ ,

Xbss′ ≥ XB(dB,dS), and Xsbb′ ≥ XS(dB,dS)

Each inequality is strict if the component of G that contains these players is not the bipartite clique.
Every equilibrium of G⃗ generates a lower average level of trade q(dB,dS), and generates a lower
value if q(dB,dS) < q∗.

is result highlights how our result on the importance of cliques generalizes in a straight-
forward manner to networked markets. While we have focused on a two-sided incentive issue
in which both buyer and seller would myopically wish to deviate, the results are similar if the in-
centive issue is only one-sided. For example, suppose that players on one side of the market (e.g.
buyers) can commit to the terms of trade but those on the other (e.g. sellers) cannot: by maxi-
mizing the diffusion of information, cliques generate the strongest self-enforcement for each side
of the market.

A one-sided incentive issue also arises if in each interaction, the buyer and seller were making choices sequentially





is analysis highlights how viscosity is better suited to this kind of analysis than measures
that focus on connected triples (e.g. clustering or support coefficients), which cannot distinguish
between different bipartite graphs since no bipartite graph has a connected triple. Viscosity, by
contrast, uses the global architecture to measure the transmission of punishments that inïuence
each player’s incentives to fulîll trades as planned.

. Social Collateral

Viscosity offers a natural measure for the social collateral within a network of partnerships: in
each relationship, players can trust each other to a greater degree when they recognize that a
player’s deviation incurs the loss of social collateral embodied in other relationships. Decompos-
ing cooperation phase incentives makes this clear: notice that ICCoop

ij on p.  can be re-written
as

T(ϕij) − ϕij ( +
λ

r ) ≤ ∑
k∈Ni/{j}

(λr ϕik − T(ϕik)Xijk) . ()

e left-hand side measures the extent to which cooperation on link {ij} exceeds that support-
able by simply bilateral enforcement—i.e., the bilateral stakes ϕB. Were ϕij equal to ϕB, this term
would be zero; at stakes greater than ϕB, it represents how much of the cooperation in link {ij}
is being subsidized by the other relationships. e right-hand side measures the level of social
collateral available to subsidize cooperation on link {ij}. For each of player i’s other relationships,
the measure aggregates how much player i gains from subsequent cooperation minus how much
she would lose were she to be punished before she could shirk. Lower levels of viscosity increase
the level of social collateral, and as we have seen, the clique uses social collateral in the strongest
possible way.

Social collateral strengthens both relationships within the network and those with outsiders
whowould trade with, lend to, or hiremembers of the network. We illustrate this effect by consid-
ering employee referrals and hiring choices. Hiring workers through referrals can mitigate moral
hazard by taking advantage of social collateral.

Suppose that a îrm F must îll a vacancy for which effort, not skill, is important. If the hired
worker exerts effort e, she bears the convex cost γ(e) whereas the îrm accrues the output e. e
challenge is that the îrm cannot contract on output even if it is observable. When hiring from the

so that one of the sides could not gain from its deviation.
We thank Kalle Moene and Gaute Torsvik for encouraging this application.





spot market, the îrm’s only available punishment for shirking is to îre the worker. If the worker
is not îred, the îrm and worker meet at Poisson distributed times with rate parameter λf. In the
absence of social collateral, the îrm’s problem is to select “efficiency wages” (Shapiro and Stiglitz
):

max
e,w≥

e −w s.t. w ≤ (w − γ(e))( +
λf
r ) .

Network referrals offer the îrm an additional instrument to induce effort in the form of so-
cial collateral. Suppose that the recruit, player i, is referred to the îrm by an existing worker,
player j. Suppose for simplicity that both are part of a symmetric favor-trading network in which
the common viscosity factor is X and each player does favors of level ϕ. It is understood that if
player i shirks, the îrm will immediately inform player j, after which information about player i’s
deviation propagates through the network. e recruit’s incentives to work arise from both her
efficiency wages and her ongoing beneîts from favor exchange. us, the îrm’s problem is

max
e,w≥

e −w s.t. w ≤ (w − γ(e))( +
λf
r ) +

dλ
r (ϕ −C(ϕ)) − (d − )Xϕ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Social Collateral

.

Social collateral enables the îrm to reduce wages without discouraging effort. Reductions in
viscosity increase social collateral through two channels. First, a reduction in viscosity increases
the chance that those in her network will not do favors for her in their subsequent interactions.
Second, communities with lower viscosity enforce a higher level of favors, and so being excluded
from favor exchange is a harsher punishment.

is analysis has direct implications for hiring choices: a îrm would prefer to recruit on the
basis of referrals, especially from tightly-knit communities, and will pay those hired through net-
works less than those hired on the spot market. ese predictions are broadly consistent with
patterns that have been found in low-skill labor markets in developing countries. Moreover, our
explanation resonates with that suggested by prior research: informal peer punishment can mit-
igate moral hazard and make hiring through a network preferable. A tightly-knit community
creates the social collateral that makes it an attractive source of employees.

If the level of favors is selected according to Proposition , the social collateral term is simply C(ϕF), which is
higher in less viscous networks.

See Kugler (), Iversen, Sen, Verschoor, and Dubey (), Heath (), and Dhillon, Iversen, and Torsvik
().





Our focus on moral hazard complements the existing understanding of network referrals.
Most closely related, Karlan, Möbius, Rosenblat, and Szeidl () elucidate how network-based
trust can mitigate issues of adverse selection by inducing workers to refer only recruits with high
ability. eir analysis focuses on the market for skilled labor and they înd that referred recruits
are paid more than counterparts hired from the spot market. Together, their framework and ours
suggest that network referrals are important for both high and low skill labor, for different reasons,
and the impact of networks on wages depends on whether adverse selection or moral hazard is
the more paramount consideration.

 Discussion

is paper characterizes networks that optimally sustain cooperation. Our main result (eo-
rem ) compares the binding contagion equilibrium on a clique of degree d to equilibria on all
networks that have maximal degree d. e binding contagion equilibrium on the clique Pareto
dominates all mutual effort equilibria on these other networks, and has higher average payoffs
than any equilibrium on them. As we emphasize in Section ., though contagion offers one
mechanism to achieve the highest possible cooperation, other social norms may also implement
the same equilibrium path payoffs. In the remainder of this section, we comment on various
features of our framework.

Variable Stakes We represent the level of cooperation in a mutual effort equilibrium by the en-
dogenously selected stakes at which cooperation is incentive compatible. In our view, permitting
individuals to select the stakes of their relationship is a realistic formulation of partnerships in
which individuals choose the terms at which to cooperate. Such cooperative arrangements are
ubiquitous: in risk-sharing arrangements, individuals choose how much self-insurance they can
attain; in trading and employer-employee relationships, the seller of a good or service chooses
how much effort to exert, and the the buyer chooses how much to pay.

Ghosh and Ray () and Kranton () were the îrst to note the relevance of variable
stakes in community enforcement, but to elucidate a different force: building cooperation over
time helps screen out myopic players and deters patient players from shirking and re-matching
with a new partner. Our stylized framework for stakes and stake selection departs from theirs,

See Watson (, ) and Athey, Calvano, and Jha () for related insights. Haag and Lagunoff () and
Wolitzky () use a continuous action environment in a local interaction setting in which a player takes a single
action with respect to her entire community to measure cooperation.





but identical results would hold for many different formulations of variable stakes. In terms of
the stake selection protocol, all that is needed is that it be sufficiently permissive: for every ϕ > ,
there must be some strategy proîle of the partnership that implements ϕ with probability . It
also would suffice for players to select stakes only at time , rather than at each interaction. More-
over, similar results would also hold if, as in Ghosh and Ray (), players in each partnership
simultaneously chose actions from a continuum in which higher actions beneît the partner but
come at a greater cost.

Apart from realism, the inherent ïexibility of variable stakes simpliîes analysis and exposi-
tion considerably. In contrast to the standard repeated games approach of îxing the stage game
payoffs and then identifying sets of discount factors for which cooperation arises, we can identify
the maximal level of cooperation given a îxed level of patience and then directly compare payoffs
across equilibria and networks at the same discount rate. Were the stakes ϕ îxed, we would be
compelled to distinguish networks and equilibria by the sets of parameters for which incentive
conditions are satisîed, which is both indirect and less transparent. Moreover, a technical chal-
lenge that emerges in îxed stakes environments is in verifying both equilibrium path incentives
and the credibility of punishments off the equilibrium path.

Stationary Equilibrium An important limitation of our work is our restriction to equilibria in
which behavior is stationary on the equilibrium path. Although these equilibria correspond most
closely to those studied in applications and simplify the comparison of network architectures,
the restriction is with loss of generality. We consider it important to characterize rich history-
dependent equilibria for each level of patience and note that there are few, if any, techniques
at this stage to înd optimal history-dependent equilibria for each level of patience in this rich
environment with private monitoring. Insofar as our focus is on the signiîcance of viscosity
across networks, we expect our qualitative insights regarding cliques to extend to nonstationary
equilibria.

For example, similar results would hold if players were required to both propose ϕ for ϕ to be selected, or the
average of two proposals were selected.

is would be analogous to the favor exchange environment of Section . in which both players simultaneously
performed favors for each other.

Our restriction to stationarity rules out belief-free equilibria in which players’ randomizations are inïuenced by
their experiences on the equilibrium path. Prior work (Takahashi ; Deb ) has illustrated how such history-
dependence can foster the incentive to cooperate in similar community enforcement settings, but focusing on the
behavior of very patient players in îxed-stakes environments.





Contagion on Asymmetric Networks From the standpoint of our analysis, it suffices to show
existence and optimality of contagion equilibria on cliques. Because we can compare contagion
on cliques to other equilibria on other networks without knowing the precise form that those
equilibria might take, we do not need to prove the existence of contagion more broadly.

Nevertheless, a generalized version of contagion equilibria do exist in asymmetric networks:
an asymmetric network can be partitioned into symmetric subnetworks and contagion equilibria
from these different subnetworks can be patched.

Deînition . e symmetric decomposition of a network G is a partition P of G such that each
partition element is a symmetric graph.

A generalized contagion proîle applies a contagion proîle to each subnetwork in P and treats
the interactions in different subnetworks as if they were in different games. Since this is a straight-
forward notion, we relegate its technical description to Appendix B. Using generalized contagion,
we can guarantee existence on asymmetric networks.

Proposition . Every network G has a generalized contagion equilibrium with strictly positive
stakes on each link. For every cycle in G, there exists a generalized contagion equilibrium in which
the equilibrium path stakes on that cycle strictly exceed ϕB, the stakes from bilateral enforcement.

Generalized contagion proîle may be appealing from the perspective of off-path behavior. In
particular, keeping each subnetwork strategically independent of the rest of the network bounds
the spread of contagion after a deviation. In this way, cooperation throughoutmost of the network
can be preserved off the equilibrium path. Accordingly, in our framework—in contrast to that
of Jackson, Rodriguez-Barraquer, and Tan ()—containing contagion does not require any
restructuring of the network per se, but can instead be achieved through strategic behavior.

EquilibriumNetworks We focus on optimal networks rather than equilibriumnetworks through-
out this paper. Many well-studied network formation games generate multiple equilibrium net-
works, often including efficient networks. To see this most transparently, consider a two-sided
linking process in which each player simultaneously proposes the partnerships she wishes to en-
gage in, and the {ij} partnership forms if and only if both players i and j propose it. Once formed,
the network is common knowledge. It is straightforward to see that any network G can arise in
an equilibrium of this game if it yields a non-negative net payoff for each player, via the follow-
ing strategy proîle: if network G arises then players follow an equilibrium that guarantees each





of them non-negative net payoffs, but if any other network forms then each player perpetually
shirks. is simple punishment deters players from deviating in the network formation stage.
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Appendix A Main Proofs

A. Proofs for Section 
Proof of Lemma  on p. . First considerΦi andΦ′i such that for some ik, ϕik ≠ ϕ′ik. Consider the incentives
for player i along link {ij} that are induced by the individual stakes proîleαΦi+(−α)Φ′i in whichα ∈ (, ):

T(αϕij + ( − α)ϕ′ij) + ∑
k∈Ni/{j}

XijkT(αϕik + ( − α)ϕ′ik)

< αT(ϕij) + ( − α)T(ϕ′ij) + ∑
k∈Ni/{j}

Xijk (αT(ϕik) + ( − α)T(ϕ′ik))

= α(T(ϕij) + ∑
k∈Ni/{j}

XijkT(ϕik)) + ( − α)(T(ϕ′ij) + ∑
k∈Ni/{j}

XijkT(ϕ′ik))

≤ α(ϕij +
λ

r ∑k∈Ni

ϕik) + ( − α)(ϕ′ij +
λ

r ∑k∈Ni

ϕ′ik)

= αϕij + ( − α)ϕ′ij +
λ

r ∑k∈Ni

(αϕik + ( − α)ϕ′ik),

()

where the strict inequality follows from the strict convexity of T and Jensen’s inequality, the îrst equality
is obtained by re-arranging, the weak inequality is from Φi,Φ

′
i ∈ Ψij(G), and the înal equality is from

rearranging. erefore, αΦi + ( − α)Φ′i ∈ intΨij(G) if Φi,Φ
′
i ∈ Ψij(G).

As the intersection of convex sets,Ψ(G) is convex. BecauseΨ(G) contains (ϕB, . . . , ϕB) and (, . . . ,),
it follows from above that for every α ∈ (, ), (αϕB, . . . , αϕB) ∈ intΨij(G) for every ij. erefore,
(αϕB, . . . , αϕB) is in the interior of Ψ(G). □

Proof of Lemma  on p. . Consider two triples {i, j, k} and {i′, j′, k′} such that {j, k} are distinct neigh-
bors of i and {j′, k′} are distinct neighbors of i′. It suffices to show that xijk(t) = xi′j′k′(t) for every t. Because
the network is symmetric, there exists a graph automorphism g such that g(ij) = i′j′ and g(ik) = i′k′.

Let (τz)∞z= be an ordered list of link recognition times and (lz)∞z= be the list of links in their order of
recognition. Suppose there exist z̄ such that {ik} = l̄z; i.e., link {ij} is realized at time τz′ . Suppose also that
at time  the set of contagious players is {i, j}, and that all players play according to an arbitrary contagion





proîle σ. e realization of link recognitions {τz, lz}z̄z= can be coupled with the permuted recognition
realization {τz, g(lz)}z̄z=. It follows that given the permuted recognition realization, if at time  the set
of contagious players is {i′, j′} and all players play according to any contagion proîle σ′, then player k′ is
contagious at time τz̄ if and only if player k was contagious at time τz̄ given the original recognition real-
ization. Since recognition realization {τz, lz}z̄z= has the same probability density as recognition realization
{τz, g(lz)}z̄z= regardless of the equilibrium, it follows that xijk(t) = xi′j′k′(t). □

Proof of Lemma  on p. . Every symmetric collective stakes proîle (ϕ, . . . , ϕ)must satisfy the following
simpliîed version of ICCoop

ij :

T (ϕ) ( + (d − )X) ≤ ϕ( + dλr ) . ()

First we show that every binding contagion equilibrium is symmetric. For any i ∈ N and distinct j, k ∈ Ni,
if the incentive constraints bind on both link {ij} and link {ik}, it follows that

T(ϕij) − ϕij + T(ϕik)X = T(ϕik) − ϕik + T(ϕij)X. ()

Since T is strictly convex, ϕij = ϕik. erefore, in a binding contagion equilibrium, every player must have
the same stakes across all her links, and these must set () to equality. By Assumption , the only solutions
to that equation are ϕ =  and ϕ = ϕC. □

Proof of Lemma  on p. . e equilibrium payoff of a symmetric contagion proîle in which the stakes
are ϕ is dλ

r ϕ, and every such proîle inΨ(G) satisîes (). Because ϕC are the greatest stakes that satisfy (),
it follows that the binding contagion equilibrium σC Pareto dominates every other symmetric contagion
proîle in Ψ(G).

Consider an asymmetric collective stakes proîle Φ in Ψ(G) and consider the set of players

Y = {i ∈ N ∶ Φi is asymmetric and ∑
k∈Ni

ϕik ≥ ∑
k∈Nj

ϕjk for every j ∈ N}.

First suppose that Y is non-empty and consider i ∈ M. From Lemma , it follows that each of the d!
permutations of Φi is in Ψij(G) for every j ∈ Ni. e equally weighted convex combination of the set of
permutations of Φi is Φi = (ϕ)j∈Ni such that ϕ = 

d ∑j∈Ni ϕij. Since Φi is asymmetric, Lemma  implies
that Φi ∈ intΨij(G) for every j ∈ Ni. Since G is symmetric, each player’s cooperation phase incentives are
strictly satisîed if her individual stakes proîle correspond to Φi and therefore, the collective stakes proîle
Φ = (ϕ, . . . , ϕ) is in intΨ(G). us, we have constructed a symmetric collective stakes proîle Φ in the
interior ofΨ(G) that makes no player worse off relative to the asymmetric collective stakes proîleΦ. Since
ΦC ≻PD Φ, it follows that ΦC ≻PD Φ.

Now suppose that Y is empty: then there exists player i such thatΦi is symmetric and player i’s payoffs
are at least as high as those of any other player. Consider the collective stakes proîle Φ′ = (Φi, . . . ,Φi).





erefore Φ′ ≻PD Φ, and, since either Φ′ = ΦC or ΦC ≻PD Φ′, it follows that ΦC ≻PD Φ. □

Proof of Lemma  on p. . As in the text, it is helpful to begin with a pure strategy mutual effort equilib-
rium. Consider a collective stakes proîle Φ associated with a pure strategy mutual effort equilibrium and
consider player i who interacts with partner j on the equilibrium path. Following equilibrium strategies
generates the same expected payoff for player i as the LHS of ICCoop

ij . One possible deviation for player i is
to maintain her equilibrium proposal strategy but to shirk in each interaction. e payoff from this devi-
ation is at least that on the RHS of ICCoop

ij . is deviation is unproîtable if and only if ICCoop
ij is satisîed.

Since this holds for every player i and link {ij}, it follows that Φ is in Ψ(G).
Now consider amixed strategymutual effort equilibriumσ that is distinct from every contagion proîle,

i.e., there exists at least one partnership such that the equilibrium path stakes on that link are stochastic.
For each link {ij} ∈ G, let µS

ij be the distribution of stakes on link {ij} associated with σ. As above, one
possible deviation for player i is to follow the mixed stakes announcement speciîed by σ but to then shirk
in every interaction. For this to be unproîtable in an on-path history inHij, the following must be satisîed
for every ϕ in the support of µS

ij:

T(ϕ) + ∑
k∈Ni/{j}

(∫
∞


T(ϕik)dµS

ik)X ≤ ϕ +
λ

r ∑k∈Ni
∫
∞


ϕik dµS

ik. ()

Let ϕij = ∫
∞
 ϕij dµS

ij, and consider the individual stakes proîle Φi = (ϕij)j∈Ni . Re-writing () yields

ϕij +
λ

r ∑k∈Ni

ϕik = ∫
∞


ϕij dµS

ij +
λ

r ∑k∈Ni
∫
∞


ϕik dµS

ik

≥ ∫
∞


T(ϕ)dµS

ij + ∑
k∈Ni/{j}

(∫
∞


T(ϕik)dµS

ik)X

≥ T(ϕij) + ∑
k∈Ni/{j}

T(ϕik)X,

where the equality follows by construction, the îrst inequality arises from integrating () over all ϕ in
the support of µS

ij and simplifying, and the second inequality follows from the convexity of T and Jensen’s
inequality. Note that the second inequality is strict if µS

ik is non-degenerate for any k ∈ Ni. erefore, the
contagion proîle with collective stakes proîleΦ = (Φi)i∈N is payoff equivalent to σ, andΦ is inΨ(G). Since
by assumption σ has a non-degenerate mixture, at least one incentive constraint in the payoff equivalent
contagion proîle Φ is slack.

Up to this point in the proof we have not used the fact that the network is symmetric. Now, using
symmetry, we apply Lemma  to înd that σC Pareto dominates σ. □

Proof of Lemma  on p. . Consider a deviation by player i in which she maintains her equilibrium stakes
proposal strategy but shirks in every relationship. When she shirks along some link {ik}, by deînition she





earns a stage payoff of wik if player k still doesn’t know that she has deviated from the equilibrium path;
otherwise she earns a stage payoff of no less than zero.

e second step of the argument is to compare the viscosity of equilibrium σ to that of contagion.
Suppose that player i shirks on parter j at time . We argue that the probability with which player k knows
that behavior is off the equilibrium path is no greater than xijk(t). Fix a sequence of link recognitions
that takes place in (,∞) such that by time t, no player has shirked on player k by time t in a contagion
equilibrium. at implies that player k has not met player i before time t or someone who has met … who
has met player i at any time in [, t). us, even in equilibrium σ, player k cannot know that behavior is off
the equilibrium path for that sequence of link recognitions. us, the viscosity of equilibrium σ is at least
that of contagion.

e above observations establish the result: the payoff from this deviation is at least that on the LHS
of (), and σ being an equilibrium implies that this deviation cannot be proîtable. □

Proof of Lemma  on p. . Since f (ϕ) ≡ max{, 
(T(ϕ) − V(ϕ))} need not be a bijection, for a set A ⊂

R+, deîne f −(A) ≡ {ϕ ∈ R+ ∶ f (ϕ) ∈ A}. If the stage game satisîes strategic complementarity, then
f (ϕ) < ϕ/. erefore

T(f (ϕ)) < T(ϕ ) <
T(ϕ)

 , ()

where the îrst inequality follows from T being strictly increasing, and the second inequality from T being
strictly convex.

Using f , we construct a new distribution of stakes ρSij from µS
ij. For every measurable subset A of R+,

let

ρSij(A) = ∫
ϕ∈A

pwwij (ϕ)dµS
ij + ∫

ϕ∈A ∫ϕ̂∈f −({ϕ})
(pwsij (ϕ̂) + pwsji (ϕ̂)) dµS

ij dϕ + 1( ∈ A)∫
ϕ
pssij (ϕ)dµS

ij.

Consider a mutual effort proîle in which if i < j, for every history h ∈ Hij, σ̃S
i (h) = ρSij, and if i > j,

σ̃S
i (h) = supϕ∈Supp(ρS

ij)
ϕ. Such a stake proposal strategy proîle implements the distribution ρSij in each

link {ij}. Since σ̃ is a mutual effort proîle, players work on the equilibrium path.
To argue thatU(σ̃) ≥ U(σ), let ũij and w̃ij be the analogues of uij andwij. By construction of f , u, and ũ,

ũij + ũji = ∫
∞


ϕdρSij

= ∫
∞


ϕpwwij (ϕ)dµS

ij + ∫
∞


ϕ∫

ϕ̂∈f −({ϕ})
(pwsij (ϕ̂) + pwsji (ϕ̂))dµS

ij dϕ

= ∫
∞


ϕpwwij (ϕ)dµS

ij + ∫
∞

 ∫
ϕ̂∈f −({ϕ})

f (ϕ̂)(pwsij (ϕ̂) + pwsji (ϕ̂))dµS
ij dϕ

≥ ∫
∞


ϕpwwij (ϕ)dµS

ij + ∫
∞

 ∫
ϕ̂∈f −({ϕ})

(T(ϕ̂) −V(ϕ̂))(pwsij (ϕ̂) + pwsji (ϕ̂))dµS
ij dϕ

= uij + uji.





Since this holds for every {ij} in G, it follows that U(σ̃) ≥ U(σ).
We take the analogous steps for W. Notice that

W(σ) = λ

r + dλ( + (d − )X) ∑
{ij}∈G

(wij +wji),

and so to prove that W(σ̃) ≤W(σ), it suffices to establish that for every {ij} in G, w̃ij + w̃ji ≤ wij +wji:

w̃ij + w̃ji = ∫
∞


T(ϕ)dρSij

= ∫
∞


T(ϕ)pwwij (ϕ)dµS

ij + ∫
∞


T(ϕ)∫

ϕ̂∈f −({ϕ})
(pwsij (ϕ̂) + pwsji (ϕ̂))dµS

ij dϕ

= ∫
∞


T(ϕ)pwwij (ϕ)dµS

ij + ∫
∞

 ∫
ϕ̂∈f −({ϕ})

T(f (ϕ̂))(pwsij (ϕ̂) + pwsji (ϕ̂))dµS
ij dϕ

≤ ∫
∞


T(ϕ)pwwij (ϕ)dµS

ij + ∫
∞

 ∫
ϕ̂∈f −({ϕ})

T(ϕ̂)(pwsij (ϕ̂) + pwsji (ϕ̂))dµS
ij dϕ

= wij +wji,

where the inequality follows from (), and the rest from construction. □

Proof of Lemma  on p. . We îrst use an argument analogous to that of Lemma . Let ρSij be the distribu-
tion of stakes along link {ij} in the mutual effort proîle σ̃. Let ϕij = ∫

∞
 ϕij dρSij, and consider the contagion

proîle σ with collective stakes proîle (ϕij)i∈N,j∈Ni . Let uij and wij be the analogous stage game payoffs from
working and shirking on the path of play. By construction, uij = ũij. It follows from the convexity of T and
Jensen’s inequality that wij ≤ w̃ij for each link {ij}.

e next step is to argue that there exists a symmetric contagion proîle that satisîes the same con-
straint. Let ϕ∗ = 

∣G∣ ∑{ij}∈G ϕij, and consider a contagion proîle σ∗ in which those are the stakes in each
link. Clearly, U(σ∗) = U(σ). at W(σ∗) ≤W(σ) follows from

∑
{ij}∈G

(w∗ij +w∗ji) = ∣G∣T(ϕ∗) = ∣G∣T( ∑
{ij}∈G

ϕij/∣G∣) ≤  ∑
{ij}∈G

T(ϕij) = ∑
{ij}∈G

(wij +wji),

where the inequality is again by convexity of T and Jensen’s inequality.
e înal step is to show that ϕ∗ ≤ ϕC. Observe that U(σ∗) ≥W(σ∗) implies that

∣G∣λ
r ϕ∗ ≥ ∣G∣λ

r + dλ
( + (d − )X)T(ϕ∗) Ô⇒ T(ϕ∗)

ϕ∗
≤ r + dλ
r + rX(d − ) =

T(ϕC)
ϕC .

Since T is strictly convex, the conclusion follows. □





A. Proofs for Section 
Proof of eorem  on p. . We say that a sequence of link recognitions (τz, lz)∞z= contains a path ζ if there
exists a sub-string of (lz)∞z= that corresponds to ζ .

Consider a networkG in which the maximal degree is d, and îx a triple {i, j, k} such that {ij},{ik} ⊂ G.
Let G−i be the network that results from deleting all of player i’s links. If there is no path between players
j and k in G−i, then i, j, k are not part of a cycle and the result is implied by Proposition . So suppose that
there is at least one path between players j and k in G−i.

Consider all the paths in G−i from player j to player k: let ζ be a generic such path, and let S be the set
of all such paths. We consider a partition of S, such that two paths are in the same partition element if and
only if ζ() = ζ ′() and ζ(Zζ − ) = ζ ′(Zζ′ − ). In other words, the second and second to last players in
the path coincide. Since player j and player k each has at most (d − ) neighbors in G−i, there are at most
(d − ) partition elements. We denote a partition element by Suv if ζ() = u and ζ(Zζ − ) = v for every
ζ ∈ Suv.

Now, consider an arbitrary triple {i, j, k} in G (d). Let Nm be player m’s neighborhood in G (d). Con-
sider injective functions g ∶ Nj → Nj and h ∶ Nk → Nk such that (i) if {jk} ∈ G, then g(k) = k and h(j) = j;
(ii) g(v) = h(v) for every v ∈ Nj ∩Nk; and (iii) i = g(i) = h(i).

Suppose that at time , players j and j are contagious in networks G and G (d) respectively, and con-
tagion spreads whenever the link between an infected player and an uninfected player is recognized. We
couple the processes on G and G (d) as follows. Given a sequence of link recognitions (lz)∞z= on G,

. Player j meets player g(u) ∈ Nj whenever player j meets player u ∈ Nj.
. Player k meets player h(v) ∈ Nk whenever player k meets player v ∈ Nk.
. For any path ζ ∈ Suv contained in (lz)∞z= for which Zζ ≥ , player g(u) ∈ Nj meets player h(v) ∈ Nk

when player u meets player ζ() in ζ .

Consider any sequence of link recognitions (lz)∞z= onG such that at time  the set of contagious players
is {i, j}, and such that player k becomes contagious before link {ik} is recognized. Such a sequence contains
some path ζ that is completed (all its links are recognized) before link {ik} is recognized. By considering all
possible such paths, we argue that in the coupled link recognition process on G (d), player k must become
contagious before meeting i. e most straightforward case is that of Zζ = : it follows that link {jk} ∈ G,
and the unique path ({jk}) ∈ Skj is completed before link {ik} meets; by the coupling, player j must meet
player k (and so player k is contagious) before link {ik} is recognized. e next case is that of Zζ = : it
follows that there exists a player u ∈ Nj ∩Nk/{i}, and the path is ζ ∈ Suu; by the coupling, îrst player j must
meet player g(u) ≠ i, and then player g(u)must meet player k (and so player k is contagious), both before
link {ik} is recognized. Finally, consider any path ζ ∈ Suv with Zζ ≥ : by the coupling, îrst player j must
meet player g(u) ≠ i, next player g(u)must meet player h(v) ≠ i, then player h(v)must meet player k (and
so player k is contagious), all before link {ik} is recognized.

us, for any sequence of link recognitions (lz)∞z= onG in which link {ik}meets only after player k has
already infected by a path from player j, there is a coupled sequence of link realizations on G (d) in which





the analogous event occurs. Note that the density of link realizations on G (d) is at least as high as that in
G.

e other form of link realization by which player k may be infected before {ik} is recognized is if
player i meets a neighbor m ∈ Ni/{j, k}, and then a path from player m infects player k before link {ik} is
recognized. e proof applies mutatis mutandi with player m taking the stead of player j. Since player i
has at most d neighbors in networkG, the density of these link realizations is no greater in networkG than
in G (d).

Finally, we argue that the inequality is strict if the component of G that contains players i, j, and k is
anything other thanG (d). If ∣Nj ∩Nk∣ < d, or if {jk} ∉ G, thenG (d) has additional paths by which player k
may become infected before link {ik} is recognized, and similarly if ∣Ni ∩Nk∣ < d. □

Proof of eorem  on p. . Consider a networkGwithmaximal degree d. First consider amixed strategy
mutual effort equilibrium. By the argument of Lemma , it follows that there exists a payoff equivalent pure
strategy mutual effort proîle whose on path collective stakes proîle Φ is in Ψ(G).

Observe that for every player i and link {ij} in network G,

T(ϕij) + ∑
k∈Ni/{j}

T(ϕik)X(d) ≤ T(ϕij) + ∑
k∈Ni/{j}

T(ϕik)Xijk ≤ ϕij +
λ

r ∑k∈Ni

ϕik, ()

in which the îrst inequality follows from Xijk ≥ X(d) (established by eorem ) and the second inequality
from Φi ∈ Ψij(G). ere are di inequalities of this form for player i, one for each of her links. Averaging
over them yields


di
∑
j∈Ni

ϕij +
λ

r ∑k∈Ni

ϕik ≥

di
∑
j∈Ni

(T(ϕij) + ∑
k∈Ni/j

T(ϕik)X(d))

= ( 
di
∑
j∈Ni

T(ϕij)) ( + (di − )X(d)) .

Consider an individual stakes proîle in which player i’s stakes on each link are ϕ′i = 
di ∑j∈Ni ϕij. Jensen’s

inequality implies that

ϕ′i +
diλ
r ϕ′i ≥ T (ϕ′i) ( + (di − )X(d)) .

and therefore,

T(ϕ′i)
ϕ′i

≤
 + di λr

 + (di − )X(d)
.

Our aim is to show thatϕ′i ≤ ϕ(d). If di = d, then this follows fromAssumption  since the RHS corresponds





to T(ϕ(d))/ϕ(d). Otherwise, if di < d it suffices to show that

 + di λr
 + (di − )X(d)

<
 + dλ

r
 + (d − )X(d)

,

which is equivalent to X(d) < λ
r+λ . Since this was already established in Proposition , it follows that

ϕ′i ≤ ϕ(d). Since player i’s payoff in equilibrium σ is diλ
r ϕ′i , it follows from di ≤ d and ϕ′ ≤ ϕ(d) that her

payoff in equilibrium σ is less than u(d)—that of the binding contagion equilibrium on G (d). Observe
that if the component that contains player i is not G (d), then the îrst inequality in () is strict, which
translates into every subsequent inequality in this line of reasoning being strict.

Now consider an equilibrium proîle σ such that shirking occurs on the equilibrium path with strictly
positive probability, and assume that the stage game satisîes strategic complementarity. We use a series
of arguments analogous to Lemmas - to argue that the binding contagion equilibrium on G (d) has the
greatest average payoff. Using the notation of Lemma , let U(σ) be the total utility, which can be written
in different forms:

U(σ) ≡ λ

r ∑i∈N
∑
j∈Ni

uij =
λ

r ∑{ij}∈G
(uij + uji) =∑

i∈N
∫
∞


e−rte−diλtλ∑

j∈Ni

(uij +
λ

r ∑k∈Ni

uik)dt.

Applying Lemma  and eorem  implies that for every player i and link {ij},

wij + ∑
k∈Ni/{j}

wikX(d) ≤ wij + ∑
k∈Ni/{j}

wikXijk ≤ uij +
λ

r ∑k∈Ni

uik. ()

It follows that for every i,

∫
∞


e−rte−diλtλ∑

j∈Ni

(uij +
λ

r ∑k∈Ni

uik)dt ≥ ∫
∞


e−rte−diλtλ∑

j∈Ni

(wij + ∑
k∈Ni/{j}

X(d)wik)dt

= λ

r + diλ
( + (di − )X(d))∑

j∈Ni

wij,

≥ λ

r + dλ( + (d − )X(d))∑
j∈Ni

wij,

where the îrst inequality follows from () and the second inequality follows from X(d) < λ
r+λ . Deîne

W(σ) = λ

r + dλ( + (d − )X(d)) ∑
{ij}∈G

(wij +wji);

it follows thatU(σ) ≥W(σ). Analogous to Lemma , there is a mixed strategy mutual effort proîle σ̃ such
that U(σ̃) ≥ U(σ) ≥W(σ) ≥W(σ̃): construct σ̃ in exactly the same way as in the proof of Lemma . e





inequality follows from the analogous observation that for every link {ij},

ũij + ũji ≥ uij + uji, and w̃ij + w̃ji ≥ wij +wji.

Now we proceed to apply the argument of Lemma : transforming the mixed-strategy mutual effort proîle
σ̃ to the pure-strategy mutual effort proîle σ preserves the relationship: naturally, ũij = uij and wij ≤ w̃ij,
and so U(σ) ≥ W(σ). Consider the average stakes ϕ∗ = ∑{ij}∈G ϕij/∣G∣, and the contagion proîle σ∗ in
which those are the stakes in each link. By construction

U(σ) ≤ U(σ∗) = ∣G∣ (λr ϕ
∗) .

Applying an argument virtually identical to that of Lemma  yields W(σ∗) ≤W(σ), which in turn implies
that U(σ∗) ≥ W(σ∗). erefore, it follows that ϕ∗ ≤ ϕ(d) for exactly the same reason as in Lemma .
Summarizing, this implies that the average utility

U(σ)
n ≤ ∣G∣n (

λ

r ϕ(d)) ≤
dλ
r ϕ(d) = u(d), ()

in which the second inequality follows from ∣G∣/n ≤ d. Notice that if G includes a component that is not
G (d), the îrst inequality in () is strict for some player i and link {ij}, and thus the îrst inequality in ()
is also strict. □

Proof of eorem  on p. . Consider a non-empty incomplete networkG in which some player i obtains
interaction payoff ui in a mutual effort equilibrium, and ui ≥ c(di). From the argument in eorem , it
follows that

ui
di
< u(n − )

n −  ,

and, because linking costs are concave,

c(di)
di
≥ c(n − )

n −  .

Combining these two inequalities and multiplying by n −  yields

u(n − ) − c(n − ) > (n − 
di
) (ui − c(di)) ≥ ui − c(di).

Now consider an equilibrium in which shirking occurs on the equilibrium path. From the argument in
eorem , it follows that the average interaction payoff is strictly less than u(n− ). Because linking costs
are concave, it also follows that the average linking cost is at least c(n− )/(n− ), and therefore, it follows
as above that the net value is strictly less than u(n − ) − c(n − ).





□

Proof of eorem  on p. . First restrict attention to mutual effort equilibria. Suppose towards a contra-
diction that there exists network G in which every player obtains at least u(d∗) − c(d∗) and at least one
obtains a strictly higher payoff. G must have at least one component in which there exists a player who
obtains a payoff strictly exceeding u(d∗) − c(d∗). By our reasoning above, this component cannot be a
clique. Consider a player, say player i, who has the highest degree, d′ in this component: by eorem ,
her interaction payoff is strictly less than u(d′), which is what she would obtain in G (d′). erefore, her
total payoff is strictly less than u(d′) − c(d′), and therefore strictly less than u(d∗) − c(d∗). □

Appendix B Supplementary Appendix

B. Additional Proofs for Section 
We îrst prove the analogue of Lemma  of Ellison ():

Lemma . For every non-empty set of players M ⊆ N with i ∈M,

πi(M/{j}) − πi(M ∪ {j}) ≤ πi({i}) − πi({i, j}). ()

Proof. We establish this claim for every generic sequence of link recognitions (in which no two links meet
simultaneously) and then take expectations over them. Let ξ be a generic sequence of link recognitions
that take place in [,∞); let (τz)∞z= be an ordered list of link recognition times and (lz)∞z= be the list of
links in their order of recognition.

Fix a player i and suppose thatM is the set of players who are contagious at a time normalized to zero.
If the subsequent set of link recognitions follows ξ, then the set of contagious players at time τz is

Cz(M, ξ) ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Mo if z = ,
Cz−(M, ξ) if z >  and either lz ⊆ Cz−(M, ξ) or lz ⊆ N/Cz−(M, ξ),
Cz−(M, ξ) ∪ lz otherwise.

()

When two players who are both cooperative or both contagious meet, no player changes phase; it is only
when a contagious player meets a cooperative player that the latter also becomes contagious. Deîne
πi (M∣ξ) to be the equilibrium continuation value of player i when players in M (including player i)





are in the contagion phase at time zero, the realization of recognition times is {τz}∞z=. By calculation,

πi (M∣ξ) − πi (M ∪ {j}∣ξ)

=
∞
∑
z=

e−rτz ∑
k∈Ni

T (ϕik)1({k} = lz ∩ (Cz(M ∪ {j}, ξ)/Cz(M, ξ)))

≤
∞
∑
z=

e−rτz ∑
k∈Ni

T (ϕik)1({i, k} = lz ∩ (Cz({i, j}, ξ)/Cz({i}, ξ)))

= πi ({i}∣ξ) − πi ({i, j}∣ξ)

()

where 1 is the indicator function. e weak inequality follows from

Cz (M ∪ {j}, ξ) /Cz (M, ξ) ⊆ Cz ({i, j}, ξ) /Cz ({i}, ξ) . ()

Since () holds for every generic ξ, taking the expectation over ξ yields (). □

Proof of Proposition  on p. . Consider a binding contagion proîle with collective stakes proîleΦ. Since
this proîle satisîes cooperation phase incentive constraints by construction, it suffices to establish conta-
gion phase incentives.

Clearly, if ϕ̂ij or ϕ̂ji differ from ϕij, or if player i or j has shirked with each other in a previous interaction,
player ihas no incentive towork since player jwill shirk. Instead, suppose as in ICCont

ij on p.  that neither of
these have occurred and that player i knows that playersM are in the contagion phase. Let πi(∅) represent
player i’s equilibrium continuation value. It follows from binding ICCoop

ij on p.  that

T(ϕij) − ϕij = πi(∅) − πi({i, j}) = πi({i}) − πi({i, j}) ≥ πi(M) − πi(M ∪ {j}), ()

in which the îrst equality is a binding ICCoop
ij being re-written, the second inequality follows from all of

player i’s cooperation phase incentive constraints binding and soπi(∅) = πi({i}), and the inequality follows
from Lemma . Adding ϕij + πi (M ∪ {j}) to each side yields ICCont

ij . □

B. Additional Proofs for Section 
Proof of Proposition  on p. . First, suppose there is no cycle that includes both ij and ik. en player k
becomes contagious in a contagion proîle only through meeting player i on link ik, which occurs at rate λ.
Hence xijk(t) = eλtλ so Xijk = ∫

∞
 e−rτ eλtλdτ = λ

λ+r . Now suppose there is a cycle including both ij and ik.
en for all τ >  there is a path from j to k that does not include i, and there is strictly positive probability
that contagion has spread from j to k along this path, independent of whether link {ik} has been recognized.
erefore xijk(τ) < eλτλ, so Xijk < λ

λ+r . □

Proof of Proposition  on p. . We use various properties of a clique to simplify the algorithm. Since a
clique is symmetric, Lemma  holds, and so there exists X(d) such that if {ij} and {ik} are both in G,





then Xijk = X(d). e term (d− )X(d) corresponds to player i being able to shirk on neighbors other than
player j before they are infected by others; we can derive a closed-form expression for this term by recursing
on the number of infected neighbors. Suppose that there arem−  of player i’s neighbors that are currently
infected: then there are m(d +  −m) links by which the contagion spreads to an uninfected neighbor of
player i; of these d+ −m correspond to links of player i. us, it follows that (d− )X(d) = χ() in which
for m ≥ ,

χ(m) = ∫
∞


e−rte−λm(d−m+)tλm(d −m + ) ( 

m + χ(m + )) dt

= λm(d −m + )
r + λm(d −m + ) (


m + χ(m + )) .

Setting χ(d + ) =  generates the expression in the statement. □

B. Proofs for Section 
Proof of Proposition  on p. . e argument proceeds by showing that the recursive formula for X⃗ijk is
identical to that for Xijk. Let i⃗j represent the interaction in which player i is called upon to do a favor for
player j: given a network G, one can then consider the directed network G⃗ that consists of all the possible
directed links. A directed path ζ⃗ from i to k is a series of directed links that begin at node i and end at node
k. We deîne the analogues of sk(M) and s̃k(M):

s⃗k(M) = {ζ⃗ ∶ ζ⃗() ∈M, ζ⃗(Zζ⃗) = k, and ζ⃗(z) ∉M for every z > } .
⃗̃sk(M) = {{i′j′} ∈ G⃗ ∶ i′ ∈M, ζ⃗() = j′ for some ζ⃗ ∈ s⃗k(M)} .

In the favor exchange environment, contagion spreads at a rate of ∣⃗̃sk(M)∣λ. us, X⃗ijk can be computed
recursively as X⃗ijk = χ⃗ik({i, j}), and for every M that contains {i, j} but not k,

χ⃗ij(M) = ∫
∞


e−rte−∣⃗̃sk(M)∣λt(λ + ∑

i′j′ ∈⃗̃sk(M)
λχ⃗ij(M ∪ {i′, j′}))dt

= λ

r + ∣⃗̃sk(M)∣λ
( + ∑

i′j′ ∈⃗̃sk(M)

Ð→χ ij(M ∪ {i′, j′})).

For every M that contains k, χ⃗ij(M) = . erefore, X⃗ijk = Xijk. □

Proof of Proposition  on p. . Straightforward algebra veriîes that the stakes ϕF are the stakes of a sym-
metric binding contagion equilibrium, and exists becauseC is strictly convex and satisîes Inada conditions.
We sketch below how to apply previous arguments to verify that it has a higher average utility than every
distinct equilibrium. Let Φi ≡ (ϕij, ϕji){ij}∈G be the individual proîle of favors that player i performs or a
neighbor performs for her in a pure strategy proîle, and letΦ be the collective proîle of favors (Φ, . . . ,Φn).





Let Ψ⃗ij(G) be the set of player i’s favor proîles that satisfy I⃗Cij on , and Ψ⃗(G) be the set of collective
favor proîles that satisfy all cooperation phase incentives.

BecauseC is strictly convex, it suffices to consider pure strategy favor proîles in Ψ⃗(G): for everymixed
strategy favor equilibrium, the pure strategy proîle in which each player i performs the averaged favor for
player j generates identical payoffs with a lower temptation to not perform the favor. e total utility for a
pure strategy favor proîle is

U(σ) = λ

r ∑{ij}∈G
(ϕij −C(ϕij) + ϕji −C(ϕji)) .

Consider the total deviation utility for a pure strategy favor proîle:

W(σ) =∑
i∈N
∫
∞


e−rte−dλtλ∑

j∈Ni

(C(ϕij) + ∑
k∈Ni/{j}

Xϕik)dt.

= λ

r + dλ ∑{ij}∈G
(C(ϕij) + (d − )Xϕij +C(ϕji) + (d − )Xϕji) .

Because Φ is in Ψ⃗(G), W(σ) ≤ U(σ). Consider a symmetric strategy proîle σ̃ in which for every {ij} ∈ G,

ϕ̃ij = ϕ̃ji = ∑
{i′j′}∈G

ϕi′j′ + ϕj′i′

∣G∣ .

Because C is strictly convex, it follows that W(σ̃) <W(σ) ≤ U(σ) < U(σ̃). By algebra, the implication of
W(σ̃) < U(σ̃) is that ϕ̃ij < ϕF. IfϕF < ϕ∗, it follows thatϕ−C(ϕ) is strictly increasing in the interval [ϕ̃ij, ϕ

F],
and therefore, the value is higher in the binding contagion equilibrium than in any other equilibrium. □

Proof of Proposition  on p. . To argue that q⃗ and p⃗ are part of a binding contagion equilibrium, we re-
write I⃗Cbs and I⃗Csb for the symmetric case in which qbs = q and pbs = p for every bs in G⃗:

q + (dB − )qXB ≤ q − p +
dBλ
r (q − p),

p + (dS − )pXS ≤ p −C(q) +
dSλ
r (p −C(q)) .

Setting both inequalities to bind generates q⃗ and p⃗. Now we argue that this equilibrium has the greatest
average trade. For a buyer b, let Φb ≡ (qbs,pbs)s∈Nb be her proîle of trades, and for a seller s, let Φs ≡
(qbs,pbs)b∈Ns be his proîle of trades. Let Ψbs(G⃗) be the set of trade proîles Φb that satisîes the buyer’s
incentive constraint, I⃗Cbs; notice that because of the linearity, this is a convex set. Similarly, let Ψsb(G⃗) be
the set of trade proîles that satisfy the seller’s incentive constraint, I⃗Csb. e strict convexity of Ψsb(G⃗)
follows from the strict convexity of C. is strict convexity is sufficient to argue the analogue of Lemma :
for every mixed strategy equilibrium, there exists a payoff equivalent pure strategy proîle. Notice that the





incentive constraints can be re-written as

pbs + ∑
s′∈Nb/{s}

qbs′XB ≤
λ

r ∑s′∈Nb

(qbs′ − pbs′) ,

C(qbs) + ∑
b′∈Ns/{b}

pbs′XS ≤
λ

r ∑b′∈Ns

(pb′s −C(qb′s)) .

e total utility for a pure strategy proîle is

U(σ) = λ

r ∑bs∈G⃗
(qbs −C(qbs)) .

Deîne the total deviation utility to be

W(σ) = λ

r + dBλ
∑

b∈N B
∑
s∈Nb

⎛
⎝
pbs + ∑

s′∈Nb/s
qbs′XB

⎞
⎠
+ λ

r + dSλ
∑
s∈N S

∑
b∈Ns

⎛
⎝
C(qbs) + ∑

b′∈Ns/b
pbs′XS

⎞
⎠
.

It follows from the incentive constraints that W(σ) ≤ U(σ). Consider a symmetric strategy proîle σ̃ in
which for every bs ∈ G⃗,

q̃bs = ∑
bs′∈G⃗

qbs′
∣G∣ ,

p̃bs = ∑
bs′∈G⃗

pbs′
∣G∣ .

Because C is strictly convex, it follows that W(σ̃) < W(σ) ≤ U(σ) < U(σ̃). By algebra, the implication
of W(σ̃) < U(σ̃) is that q̃bs < q⃗. erefore, every distinct equilibrium generates lower average trade than
the binding contagion equilibrium. If q⃗ < q∗, it follows that the value is greater in the binding contagion
equilibrium than in any other equilibrium. □

Proof of Proposition  on p. . For the purposes of viscosity, and so as to use the prior notation, it is helpful
to transform the bipartite networked market G⃗ into the undirected network G such that {bs} ∈ G if and
only if bs ∈ G⃗.

We compare Xbss′ to XB(dB,dS). LetG−i be the network that results from deleting all of buyer b’s links.
If there is no path between sellers s and s′ inG−i, then b, s, s′ are not part of a cycle and the result is implied
by Proposition . So suppose that there is at least one path between sellers s and s′ in G−i. As in the proof
of eorem , let ζ be a generic path from seller s to seller s′ inG−i, and let S be the set of all such paths. We
consider a partition of S, such that two paths are in the same partition element if and only if ζ() = ζ ′();
in other words, the second player coincides. Since seller s has at most (dS − ) neighbors in G−i, there are
at most (dS − ) partition elements. We denote a partition element by Su if ζ() = u for every ζ ∈ Su.

Now, consider an arbitrary buyer b and pair of sellers s and s′ in the bipartite cliqueG (db,dS). LetNm





be player m’s neighborhood in the bipartite clique. Consider an injective function g ∶ Ns → Ns such that
b = g(b). Suppose that at time , players s and s are contagious in networks G and G (db,dS) respectively,
and contagion spreadswhenever the link between an infected player and an uninfected player is recognized.
We couple the processes onG andG (db,dS) as follows. Given a sequence of link recognitions (lz)∞z= onG,

. Seller s meets buyer g(u) ∈ Ns whenever seller s meets buyer u ∈ Ns.
. Buyer b meets seller s′ ∈ Nb whenever buyer b meets seller s′ ∈ Nj.
. For any path ζ ∈ Su contained in (lz)∞z= for which Zζ ≥ , seller s′ meets buyer g(u) ∈ Ns′ when

seller s′ meets buyer ζ(Zζ − ) in ζ .

Consider any sequence of link recognitions (lz)∞z= on G such that at time  the set of contagious play-
ers is {b, s}, and such that seller s′ becomes contagious before link {bs′} is recognized. Such a sequence
contains some path ζ ∈ S that is completed (all its links are recognized) before link {bs′} is recognized. It
immediately follows that in the coupled link recognition process on G (db,dS), seller s′ must become con-
tagious before meeting buyer b. us, for any sequence of link recognitions (lz)∞z= onG in which link {bs′}
meets only after seller s′ has already infected by a path from seller s, there is a coupled sequence of link
realizations on G (db,dS) in which the analogous event occurs. Note that the density of link realizations
on G (db,dS) is at least as high as that in G.

e other form of link realization by which seller s′ may be infected before {bs′} is recognized is if
buyer b meets another seller m ∈ Nb/{s, s′}, and then a path from seller m infects seller s′ before link {bs′}
is recognized. e proof applies mutatis mutandi with seller m taking the stead of seller s. Since buyer b
has at most dB neighbors in network G, the density of these link realizations is no greater in network G
than in G (db,dS).

Finally, we argue that the inequality is strict if the component of G that contains buyer b and sellers s
and s′ is anything other than G (db,dS). If ∣Ns ∩Ns′ ∣ < dS then G (d) has additional paths by which seller s′

may become infected before link {bs′} is recognized.
An analogous argument establishes the same claim for Xssb′ . Finally, having established the claim for

viscosity, the latter statements follow from application of the argument in eorem .
□

B. Proofs for Section 
We deîne a generalized contagion proîle: given a network G, link {ij} in G, and a partition P , let P(ij) be
the member of the partition that contains {ij}. We deîne N(P) to be the set of players who have at least
one link in P, a generic member of the partition. For a history h, we let the history restricted to member Pk
of the partition, denoted by h∣Pk , be the list of all interactions in h in that involve only links in Pk. We let σi∣P
be a strategy for player i of the game in which the network is Pk and the set of players correspond to N(P).

Deînition . A strategy proîle σ is a generalized contagion proîle if there exists some symmetric decom-
position P such that





. for every link {ij} inG, for every h and h′ inHij in which h∣P(ij) = h′∣P(ij), σi(h) = σi(h′) = σi∣P(ij)(h′∣P(ij))
for some σi∣P(ij).

. for every member P of P , the proîle (σi∣P)i∈N(P) is a contagion proîle of the game with N(P) players
and the network P.

Proof of Proposition  on p. . For every G, consider the partition in which each member is a singleton.
For each member, bilateral enforcement at stakes ϕB coincides with contagion and is an equilibrium; there-
fore, there exists a generalized contagion proîle in which the stakes on each link is ϕB. IfG contains a cycle,
from i to i, let P′ be the set of links on that cycle. Since P′ is a circle, consider the non-trivial binding conta-
gion proîle on P′ (which exists by eorem ); by earlier, there exists a generalized contagion equilibrium
with strictly positive stakes for the network G/P′, and so combining the two generates a generalized con-
tagion equilibrium for the network G. □
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