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Abstract

We explore group size in joint liability lending, primarily in the adverse selection

framework with local borrower information (Ghatak 1999, 2000). We show that among

homogeneous-matching contracts, a single, standardized contract charging full liability

when affordable, and the maximum affordable amount otherwise, is optimal. Further,

if maximum affordability is moderately high, this contract results in perfectly efficient

lending if groups are large enough. However, raising group size accomplishes nothing

if there is no local borrower information, showing that more is required for efficient

lending than full intra-group insurance and suggesting a complementarity between

group size and social capital. We show very similar results in two different settings,

ex ante and ex post moral hazard – though the latter framework provides an exception

in that raising group size improves efficiency even in the absence of social capital.

Returning to the baseline framework, we take a step toward modeling drawbacks of

larger groups, showing that if information deteriorates sufficiently with group size, an

interior group size does better than either extreme. Simulations suggest that most

of the efficiency gains from larger groups are realized in group sizes below ten, and

that outreach and efficiency can increase discontinuously when a moderate group size

threshold is crossed.
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1 Introduction

Microcredit has been seen by many as one of the great recent breakthroughs in development.

Formal credit access has been extended to tens of millions of relatively poor households

worldwide over the past few decades. Economic impacts are not clear but seem likely to be

positive overall, given that most of this lending now occurs without subsidies.

One of the mysteries of microcredit is how unsubsidized lending has become feasible in

markets where use of collateral is not possible.1 Significant economic research has looked

for clues, especially in the novel practices of microlenders. Hence, much attention has been

given to group lending, where microlenders lend to individuals as members of groups that

meet together for repayment and, often, bear liability for each other’s loans.

Group lending is clearly not the only answer.2 A number of prominent microlenders have

never used group lending, e.g. BRI, and others have transitioned away from it at least to

some degree, e.g. Grameen. These facts raise interesting questions about whether group

lending, and particularly joint liability lending, remains optimal relative to other lending

formats – if it ever was.

Along this line, a growing theoretical literature seeks to understand under what condi-

tions, if any, joint liability lending can improve lending outcomes relative to other forms of

lending. The results are typically nuanced – joint liability lending can improve outcomes in

some dimensions and/or under certain conditions.3

Yet, while joint liability is not the only answer, it still seems likely to be a substantial

1According to the 2006 Nobel Peace Prize press release: “Loans to poor people without any financial
security had appeared to be an impossible idea” (www.nobelprize.org).

2Armendariz and Morduch (2000) discuss other candidates for increased feasibility of microcredit.
3For example, in Baland et al. (2013), joint liability lending is compared to individual lending; in some

cases, it can do worse in outreach to poor borrowers, but better in borrower welfare. In Ahlin and Waters
(2013), joint liability lending is compared to dynamic lending, and it can dominate when agents have worse
non-borrowing options. In de Quidt et al. (2012a), joint liability lending is compared to group lending
without joint liability and to individual lending, and it can dominate for intermediate levels of social capital.
This nuance is present also in the early work on group lending. Stiglitz (1990) shows that joint liability

lending raises borrower risk relative to individual lending; but with sufficient social capital, it can improve
risk-pricing and allow for greater loan size. Besley and Coate (1995) shows that joint liability lending raises
repayment in some states of the world but lowers it in others, with ambiguous net implications unless social
sanctions are strong enough.
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part of it – and not only historically. There appears to be no statistical evidence of a trend

away from joint liability lending, and de Quidt et al. (2012a,b) document a majority of

loans being given through some form of joint liability in a recent worldwide database of

microlenders. Thus, while understanding joint liability and its role in improving lending

outcomes is certainly not the only worthwhile line of inquiry in understanding the feasibility

of microlending, it seems as relevant as ever.

However, a significant gap exists in the current theoretical literature on joint-liability

based microcredit: it typically focuses on groups of size two. (Exceptions and related litera-

ture are discussed below.) This is undoubtedly for reasons of simplicity and/or tractability

rather than empirical relevance, since groups often have between four and ten members,

and rarely two. The goal of this paper is to relax the assumption of two-member groups

in analyzing optimal group contracts and lending outcomes, and thus to explore the role of

group size. We do so in a range of theoretical contexts, and with varying degrees of borrower

social capital.

The primary analysis is in the context of adverse selection, specifically the framework

of Ghatak (1999, 2000), based on Stiglitz and Weiss (1981). Borrowers have projects with

identical mean returns, all worthwhile to fund. The projects differ in risk levels, with risk

unobservable by the zero-profit lender but common knowledge among borrowers. Under

standard individual loans with limited liability, safer borrowers pay more in expectation

than risky – they succeed, and thus repay their loans, more often. The need to pay this

cross-subsidy if they borrow can keep safer borrowers out of the market, leading to partial

or complete market breakdown.

Ghatak (1999, 2000) and Gangopadhyay et al. (2005) have shown in this context that

joint liability lending to groups of size two can, but may not, restore the market to efficiency.

The efficiency gains rely on the incentives for borrowers to sort homogeneously and the

improved risk-pricing that results, both stemming from the joint liability contract.4

4Evidence for homogeneous matching and improved risk-pricing can be found in Ahlin (2009).
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In this context, we consider lending to groups of size n ≥ 2. We begin by deriving an

optimal contract subject to several constraints, including limited liability; monotonicity, as

in Innes (1990) and Gangopadhyay et al. (2005), which guarantees that borrowers cannot be

liable for more than their fellow group members’ loan values; and equilibrium homogeneous

matching, since joint liability contracts by themselves do not guarantee this.

Define an affordable full liability contract (“AFLC”) as the contract that requires the

group to repay its full obligation unless too many members have failed, in which case each

successful borrower pays the maximum amount affordable by all. That is, an AFLC involves

full liability to the extent allowed by limited liability. We show three main results about

contract form. First, an AFLC uniquely induces homogeneous matching. Second, assuming

a single contract is offered to all, an AFLC is optimal. Third, no menu of contracts can

achieve higher efficiency than a single AFLC offered to all – i.e., pooling is without loss of

generality.

These results rationalize a contract form that is arguably the canonical form of group

lending, given that many group-based microlenders make borrowers fully liable for all group

loans. The intuition here is that among monotonic contracts, full liability maximizes bor-

rower payments in states of the world with more failures, which are experienced dispropor-

tionately by risky borrowers. Thus, by shifting the repayment burden toward risky borrowers

as much as possible, full liability minimizes the cross-subsidy risky borrowers receive from

safe borrowers, i.e. it most accurately prices for risk.

Knowing the optimal contract, how does efficiency vary with group size? Under an

affordability condition, we show that fully efficient lending – complete outreach and maximal

borrower surplus – is always achievable by group lending with large enough groups. The

affordability condition is quite plausible, because it does not depend on a borrower being

able to bail out the entire group, but only his share of failed borrowers at mean failure rates.

This main result is possible because under an AFLC, increasing group size sends toward

one the probability that the group will be able to repay its entire obligation – essentially,
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it provides asymptotically full insurance to the group. However, within-group insurance is

not sufficient. We show that group size is irrelevant if an AFLC is used but there is no local

information, i.e. random matching, even though large groups can attain asymptotically full

insurance under random matching.

The reason behind these results is that there are two potential sources of the cross-subsidy

that works against efficient lending: within-group and between-group. Group repayment

with certainty eliminates cross-subsidies between groups, regardless of matching patterns,

by ensuring all groups pay their share. However, it does nothing about within-group cross-

subsidies. Under random matching, a group’s obligations are borne more heavily by the

safer borrowers within the group, and this potential within-group cross-subsidy eliminates

any gain from group lending.

By contrast, the AFLC with local information induces homogeneous matching – eliminat-

ing the within-group cross-subsidy – and, with sufficiently large groups, causes the probabil-

ity of full group repayment to approach one – asymptotically eliminating the between-group

cross-subsidy. Asymptotically all borrowers pay the same and none are excluded. Thus,

increasing group size is an effective tool for improving risk-pricing and achieving efficient

lending, but only given sufficient social assets (local borrower information).

How widely applicable are these results? We next show they apply in two quite different

settings, an ex ante moral hazard setting as in Stiglitz and Weiss (1981) and Stiglitz (1990);

and an ex post moral hazard setting as in Baland et al. (2013; “BSW”).

The Stiglitz setting features unobserved project choice, where limited liability skews the

borrowers’ incentives toward taking on excess, inefficient risk. In this context, under the

same key affordability condition, fully efficient lending is also achievable with an AFLC and

large enough groups. While intragroup insurance is critical to this result, it also depends

critically on borrowers being able to decide cooperatively on projects that maximize total

group payoffs. If instead borrowers act non-cooperatively, i.e. can unilaterally deviate from

the group-optimal project choice, then group lending offers no improvement over individ-
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ual lending regardless of group size. So again, group size is an effective tool, but only in

conjunction with a social asset.

In the BSW setting, borrowers can freely walk away from loans, but the lender can impose

non-pecuniary sanctions. Sanctions are critical for repayment incentives, but they also entail

efficiency losses. Unlike most previous work, BSW analyze the role of group size; however,

they focus on local properties and non-monotonicities. Our work complements theirs by

analyzing outcomes when group size can be set freely.

BSW show that in the absence of social sanctions, group lending achieves strictly lower

outreach than individual lending, but can sometimes provide higher payoffs to those who

do borrow. They also show that borrower welfare can sometimes be raised by using smaller

groups. We show that almost every borrower that can be reached by individual lending can

be reached by group lending with large enough groups – and with strictly higher payoffs.

We also show that while welfare can sometimes be increased by using a smaller group size,

it can always be raised even more by using a larger group size. Thus, again group lending

with adequately large groups nearly completely dominates individual lending – interestingly

here, unlike in the other contexts, without the assumption of any social capital.

BSW also allow for social sanctions. While the availability of social sanctions enhances

outreach and efficiency of group lending, as they show, even with arbitrarily large social

sanctions, individual lending may still achieve better outreach than group lending. However,

this is with fixed group size. Here we show that any positive amount of social sanctions

means group lending dominates individual lending in both outreach and borrower payoffs

for large enough groups; and social sanctions above a fixed level guarantee complete outreach

and borrower payoffs arbitrarily close to efficiency for large enough groups.

Together, these results show that group size combined with some social asset can be

an effective tool in achieving efficient lending. There is also an interesting difference in

that group size without any explicit social asset is ineffective in two environments but quite

valuable in the other – suggesting a potential direction for future empirical work exploring
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complementarities between group size and social capital.

The results on group size so far have been asymptotic. The question remains whether the

mechanisms highlighted are relevant for reasonable group sizes. We address this question in

two ways. First, we return to the baseline adverse selection model and assume that local

information deteriorates as group size increases, and with it homogeneous matching. Not

surprisingly, assuming that local information vanishes in the limit, a moderate group size

attains higher efficiency than either extreme.

Second, we simulate the model using what we argue are reasonable parameter estimates.

The simulations show that the asymptotic arguments are applicable at reasonable group

sizes, and even when the affordability assumption is not met: most of the efficiency gains to

large groups occur for group sizes below 10. We also observe a “discontinuity” in efficiency as

group size increases, with efficiency jumping substantially as a typically moderate threshold

is reached – in our simulations, in the 2-5 range. Finally, we see that higher project returns

relax affordability constraints and can substitute for larger group size – a prediction that

future empirical work could explore. Overall, the results seem to help rationalize observed

group sizes as not just incidental but perhaps critical to the effective use of group lending.

Section 2 discusses related literature. Section 3 sets out the model and contract restric-

tions, while Section 4 provides results on optimal contract form. Section 5 shows the effect of

group size in the baseline setting, while Section 6 analyzes group size in two other settings.

Section 7 takes up limits to group size theoretically and presents simulation results, and

Section 8 concludes. Proofs are in the Appendix.

2 Relation to the Literature

A number of this paper’s broad ideas about group size can be found elsewhere. Some of the

first to discuss group size, though without formal modeling, are Ghatak and Guinnane (1999)

and Ghatak (2000). They argue that a potential advantage of larger groups is the greater
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likelihood the group can repay its loans, and also point out that a likely disadvantage of larger

groups is deteriorating social information and cooperation. Though in different contexts than

ours, Diamond (1984), Laux (2001), and Conning (2005) provide formal models showing that

large groups can be used to improve efficiency, and even asymptotically attain the first-best,

again due to elimination of group-level risk.5 Conning (2005), the closest to our paper, also

shows that groups that are too large may not be able to enforce the cooperative agreements

necessary for group repayment.6

Yet, the literature does not present a fully settled view on group size. Baland et al.

(2013; “BSW”) show that sometimes a smaller group size can raise efficiency, in a setting

similar to Diamond (1984) and Laux (2001). And, in the only formal treatment of group

size in our focal context of adverse selection (Ghatak, 1999, Appendix A.1), group size is

irrelevant.7 The point is that the literature could seemingly benefit from a detailed analysis

of group size that draws these different results together, in the adverse selection context and

beyond.

Our paper contributes to the literature on group size in lending in a number of ways.

With the already noted exception of Ghatak (1999), it is the first analysis of group size

in the adverse selection setting.8 It is not obvious why group size should have any impact

in this setting where there are no penalties for default, incentives are irrelevant, and full

insurance within the group has no obvious benefit. In this context, we derive an optimal

contract (which explains the difference from previous results in this context) and demonstrate

homogeneous matching. We also show that the basic logic from the literature – that large

5Che (2002) also shows that larger groups bring about greater efficiency. The logic is quite different –
it is related to the fact that the punishment, in a repeated game where all fellow group members shirk in
retaliation for one member shirking, is stronger the more group members there are.

6One difference is that Conning does not impose monotonicity on the contract, and so analyzes contracts
where a borrower gets positive payoffs only if all projects in his group succeed.

7That is, any impact of a change in group size can be accomplished by a change in the degree of joint
liability. However, the analysis is mainly a robustness check of homogeneous matching, not a full investigation
of group size; accordingly, attention is restricted to a linear form of the joint liability contract.

8The remaining literature on group lending under adverse selection analyzes groups of size two. This
includes Ghatak (2000), Van Tassel (1999), Laffont and N’Guessan (2000), Laffont (2003), and Armendariz
and Gollier (2000). Gangopadhyay et al. (2005) extends the Ghatak model to include a monotonicity
constraint, still with groups of size two.
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groups can repay with near certainty – is an important but not sufficient aspect of increasing

group size in this setting. The presence of a social asset – local borrower information – is

necessary for large groups to have any impact. In addition, we find that affordability is also

critical in this context where there is heterogeneity in project returns, but that large groups

make affordability at mean failure rates the determining factor, rather than affordability in

tail events.

The results here also clear up the seeming counterexample provided by the BSW result

that, even without any deterioration of group social capital as group size increases, welfare

can sometimes be improved by a smaller group size. We show that it is also true that welfare

can be improved even more by a larger group size. This frames the BSW result as about

local monotonicity rather than the general tendency toward efficient lending as group size

increases.

We also add to the literature an exploration of how the effect of group size varies with

social capital.9 We find that in two settings – adverse selection and ex ante moral hazard –

some social asset is needed for group size to have any effect, while in a third setting – ex post

moral hazard – group size can be a useful tool even without a social asset. This introduces

to the literature an idea with empirical applications, that there can exist a complementarity

between group size and social capital, and that it may vary depending on the key impediment

to lending.

To our knowledge, our paper is also the first to show via simulation that the beneficial

effects of larger groups are often realized at reasonable group levels, and that efficiency

can jump dramatically once a key group size is reached. These results are a step toward

rationalizing observed group sizes, and they suggest that the asymptotic arguments of the

other theoretical literature may also have practical relevance.

9Also relevant to this theme are the results of Conning (2005) and BSW. In an ex ante moral hazard
effort-provision context, Conning shows that the ability of a group to act cooperatively is necessary for group
lending to have any effect, and given this ability, sufficiently large groups attain first-best lending. BSW
examine the role of group size with and without social sanctions; however, unlike them, we map outcomes
when group size can be set freely.
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Finally, we know of no other papers that establish optimality of a single, standardized

contract involving full liability whenever affordable and the maximum affordable amount

otherwise. This is often taken to be the canonical group contract in microcredit, and it

is often assumed rather than justified. Hence, this result breaks ground in rationalizing a

canonical form of group lending. It also points to the idea that screening using multiple

contracts is not central to the ability of group lending to overcome adverse selection – the

key is improved risk-pricing, which can be accomplished by offering a single contract.

3 Basic Model

3.1 Environment

There is a unit measure continuum of risk-neutral agents, indexed by i ∈ [0, 1]. Each

is endowed with no capital, one unit of labor, a subsistence option, and a project. The

subsistence option requires one unit of labor only and gives expected output u ≥ 0. The

project requires one unit each of labor and capital.

Agent i’s project yields gross returns of Ri with probability pi and yields 0 gross returns

with probability 1− pi. Project returns are distributed independently across agents. As in

Stiglitz-Weiss (1981), assume that all projects have the same expected value:

pi ·Ri = R, ∀i . (A1)

However, the projects differ in risk: the pi’s are distributed over [pr, ps] according to strictly

positive and continuous density function f(p), where 0 < pr < ps < 1. Denote the expected

value of g(p) in the population as g(p).10

Agents require outside funding to carry out their projects. We consider a non-profit

lender that maximizes total borrower surplus subject to earning expected gross return ρ > 0

10So, g(p) =
∫ ps

pr
g(p)f(p)dp. For example, p = E(p) =

∫ ps

pr
pf(p)dp and p2 = E(p2) =

∫ ps

pr
p2f(p)dp.
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on capital. It is assumed that

R > ρ+ u . (A2)

This implies that in expectation, all projects return more than the cost of their inputs, capital

and labor. Thus, social surplus is monotonically increasing in outreach, i.e. the number of

projects funded, and the efficient outcome occurs iff all agents borrow.

Agents’ risk-types are observable to other agents, but not to the lender. Further, project

returns are publicly verifiable, but only coarsely: it is costless to distinguish between Y = 0

(fail) and Y > 0 (succeed), but prohibitively costly to distinguish between different levels of

Y > 0.11

There are three parameters governing rates of return: R, u, and ρ. We will often think

in terms of an equivalent set of three parameters, ρ, G, and N, where

G ≡ R

ρ
and N ≡ R− u

ρ
. (1)

G can be interpreted as the gross excess return to capital, and N as the net excess return

to capital, of these agents’ projects: the numerator is the return to a unit of capital in the

agents’ projects (gross or net of opportunity cost of labor u), and the denominator is the

return to a unit of capital elsewhere. It is clear that there is a one-to-one mapping between

these two sets of parameters. Further, ρ, G, and N can vary independently, subject only to

the following restrictions inherited from restrictions on R, u, and ρ: ρ > 0, G ≥ N, and the

equivalent of Assumption A2 guaranteeing it is efficient to fund all projects:

N > 1 . (A2)

11Rai and Sjostrom (2004) consider the case where agents do observe each others’ output levels in an ex
post moral hazard environment, and show that cross-reporting mechanisms can and must be used at the
optimum. Here, agents do not observe each other’s output, but it may be that a cross-reporting mechanism
could elicit agents to report each other’s type. We rule these mechanisms out by assumption.
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3.2 Contracts for n-person Groups

We restrict attention to deterministic, symmetric contracts, and discuss next three additional

restrictions imposed on group contracts in the analysis.

Limited liability. We assume that agents’ exposure in any financial contract is limited

to project returns. Limited liability implies nothing is due from a borrower who fails. Since

the lender cannot verify the level of successful output, we assume any payment due upon

success must be affordable by all potential borrowers.12 Since the safest borrowers earn the

least when successful (under assumption A1), this caps payment due from any successful

borrower at Rs.

Unverifiability of successful output level along with limited liability makes debt contracts

the only feasible financial contracts. Consider a symmetric lending contract for borrowers

in groups of fixed integer size n ≥ 2. Such a group contract can be captured by n non-

negative interest rates: (r0, r1, ..., rn−1), where rk is the amount due from a borrower who

succeeds and k of whose fellow group members fail, k ∈ {0, 1, ..., n− 1}.
Homogeneous matching. We consider only group contracts that uniquely induce

homogeneous matching of the borrowers, i.e. matching such that borrowers within groups

have identical types. This is a slight departure from previous literature, which considers

only joint liability contracts, then shows that joint liability induces homogeneous matching

(Ghatak 1999, 2000). This approach appears infeasible with group size n > 2, because joint

liability no longer guarantees homogeneous matching, unlike when n = 2.

To see this, define a joint liability contract as a group contract that satisfies:

r0 ≤ r1 ≤ r2 ≤ ... ≤ rn−1, and r0 < rn−1 .

Thus, for a group contract to involve joint liability, the amount a borrower owes must be

increasing in the number of failures in the group, strictly so at least somewhere.

12An alternative approach would be to assume it must be affordable only by all equilibrium borrowers, but
this complicates off-equilibrium scenarios.
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In both the baseline Ghatak model (1999, 2000) with n = 2 and the Ghatak extension

(1999) for n > 2, attention is restricted to two-parameter contracts of the form rk = r + ck,

for k ∈ {0, 1, ..., n− 1}. In both cases, homogeneous group formation occurs as the unique

stable matching outcome iff c > 0, i.e. iff the two-parameter contract is a joint liability

contract by the above definition.

Unfortunately, this equivalence does not generalize to arbitrary joint liability contracts

when n > 2. For example, assume ps > 2/3, and consider the contract rk = r, k ≤ n − 2,

and rn−1 = r + κ, for some κ > 0. One can show that the group payoff function under

this contract is strictly submodular over (2/3, 1)n if n ≥ 3 (over (1/2, 1)n if n ≥ 4). This

guarantees that homogeneous matching is not stable (see Ahlin, 2012, Proposition 3). The

intuition here is that since the contract penalizes only extreme failure, spreading out safe

types across groups raises payoffs by lowering chances of paying the penalty.

Thus in lending to groups with more than two members, the specifics of joint liability

matter for the matching pattern. The point is that, to proceed like the previous literature

and restrict attention to joint liability contracts would require venturing into theoretical

matching territory where it appears little can be said without further assumptions (Ahlin,

2012). Instead, the approach taken will be to restrict attention to contracts that induce

homogeneous matching uniquely, and seek optimal contracts from among this set.

Monotonicity. Following Innes (1990) and Gangopadhyay et al. (2005), we also impose

the following monotonicity constraint on the group contract:

rn−1 ≤ 2rn−2 ≤ 3rn−3 ≤ ... ≤ (n− 2)r2 ≤ (n− 1)r1 ≤ nr0 , i.e.

(n− k)rk ≤ (n− k + 1)rk−1 , k ∈ {1, 2, ..., n− 1} .

(2)

This guarantees that the total amount owed by the group is (weakly) increasing in the

number of successes in the group: if there are (n − k) successes, then (n − k)rk is owed

by the borrowers in total, while if there are (n − k + 1) successes, then (n − k + 1)rk−1 is

owed. The argument is that if it were cheaper to have more successes, group members could
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simply claim some of their fellow members succeeded in order to lower the total payment

due from the group.13 If n = 2, this constraint is equivalent to requiring no more than full

joint liability on the loan, r1 ≤ 2r0. When n ≥ 3, it also requires no more than full liability.

4 Optimal Group Contracts

As a starting point, we consider only single, standardized contract offers, i.e. “pooling

contracts”. This may be justified since quite a few micro-lenders apparently offer a single

standard contract form, not extensive menus of contracts. More importantly, the restriction

to pooling contracts is without loss of generality for efficiency, as we prove formally below.

A preliminary result that will aid analysis is:

Lemma 1. Under a monotonic contract that induces homogeneous matching, a safer bor-

rower earns less than a riskier borrower, and the lender earns more from a safer borrower

than from a riskier borrower. If an agent of type p̂ borrows under such a contract, so do

agents of types p ∈ [pr, p̂].

Among other things, this makes clear that safer borrowers are the harder to attract.

Given homogeneous matching, a group contract (r0, r1, ..., rn−1) gives an agent of type pi

a borrowing payoff

Πi = R−
n−1∑
k=0

pn−k
i (1− pi)

k

(
n− 1

k

)
rk . (3)

This payoff reflects the fact that borrower i pays rk iff he succeeds – probability pi – and

k of his n − 1 fellow group members fail – probability pn−1−k
i (1 − pi)

k
(
n−1
k

)
. If all agents

borrow, the zero-profit constraint (“ZPC”) is

n−1∑
k=0

pn−k(1− p)k
(
n− 1

k

)
rk ≥ ρ . (4)

13This constraint is motivated and analyzed in the n = 2 context by Gangopadhyay et al. (2005). It can
also be motivated as a reduced-form constraint from a costly state verification problem in which the lender
only audits when a failure is reported. Since reports of success go unverified, the constraint ensures there is
no incentive to overstate success.
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The summed terms are rk times the probability of getting paid rk from a randomly selected

borrower, since pn−k(1− p)k is the population average of pn−k
i (1 − pi)

k. If not all agents

borrow, the same ZPC applies with the expectation over the set of types that do borrow.

Given group size n ≥ 2, an optimal pooling contract chooses n interest rates (r0, r1, ..., rn−1)

to maximize total borrower payoffs:

∫ ps

pr

max{Πi, u}f(pi)dpi

subject to borrower limited liability (rk ≤ Rs), monotonicity (constraint 2), the ZPC, and

unique homogeneous matching. Because every project funded produces positive social sur-

plus (Assumption A2), social surplus is monotonically increasing in number of projects

funded, i.e. in outreach. If the lender exactly breaks even, as will always be the case,

borrowers obtain all the social surplus; hence, borrower surplus is also monotonically in-

creasing in outreach. An optimal contract will therefore maximize outreach subject to the

constraints.

Define a full liability contract to be a group contract satisfying, for some r ≥ 0,

rk =
nr

n− k
, k ∈ {0, 1, ..., n− 1} .

Since rk(n− k) is due from the group where there are k < n failures, this ensures the group

pays the same amount, nr, after every outcome involving at least one success in the group.

Of course, one successful borrower may not be able to cover all group loans. Hence, define an

affordable full liability contract (“AFLC”) to be a group contract satisfying, for some

r ≥ 0,

rk = min

{
nr

n− k
, Rs

}
, k ∈ {0, 1, ..., n− 1} . (5)

An AFLC imposes full liability whenever it is affordable, but caps a borrower’s payment at

the maximal amount affordable by all borrowers, Rs.
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The AFLC clearly satisfies limited liability as well as monotonicity. And, while not all

joint liability contracts satisfy the homogeneous matching constraint, the AFLC does:14

Lemma 2. Homogeneous group formation is the unique stable match under any affordable

full liability contract with r ∈ (0, Rs).

This non-trivial result is obtained via simplifications focusing on two arbitrary borrowers’

contributions to event probabilities.

Knowing that affordable full liability satisfies homogeneous matching, limited liability,

and monotonicity, we now show that it is optimal:

Proposition 1. Fix n ≥ 2 and assume there exists a group contract satisfying all constraints.

Then the set of optimal pooling contracts is non-empty and includes an affordable full liability

contract, and only this type of contract if some but not all projects are funded.

Thus, an AFLC is optimal, regardless of n and the distribution of types, though there may

be other contracts that do just as well in the polar cases where all borrowers or no borrowers

are funded.

Maximizing the degree of joint liability is optimal here for the following reason. In

this context of unobserved risk-types, what damages the lending market is the lender’s

inability to price for risk. This leads some borrowers to cross-subsidize others – in particular,

with monotonic contracts it is the safer borrowers who repay more in expectation and thus

subsidize the riskier. Anticipating paying this cross-subsidy, safer borrowers may opt out

of the market, leaving profitable projects unfunded. The way toward greater efficiency is

thus reducing the cross-subsidy from safe to risky borrowers, i.e. better risk-pricing, since

this is what will attract more (safe) borrowers and fund more worthwhile projects.15,16 The

14We use the core as the equilibrium concept for matching – this corresponds to frictionless matching with
side payments allowed. See Ahlin (2012) and its references for more details.

15Thus cross-subsidies are not just a distributional concern here, but also the source of inefficiency.
16Of course, perfect risk-pricing and perfect efficiency would obtain if the lender could observe risk-type.

The lender would charge higher rates to riskier borrowers and lower rates to safer borrowers, earning the
same in expectation from all and thus attracting all kinds.
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cross-subsidy from safe to risky is minimized when as much repayment as possible is loaded

onto outcomes with more failures, since these outcomes are experienced disproportionately

by riskier borrowers. This is exactly what affordable full liability accomplishes.

How binding is the restriction that the lender only offers one contract, rather than a

menu that screens risk-types using the shape of joint liability (as in Ghatak, 2000, and

Gangopadhyay et al., 2005) and/or group size? It is not restrictive at all:

Lemma 3. A pooling contract satisfying all constraints can achieve the same borrower sur-

plus as any menu of group contracts satisfying all constraints.

This result applies to screening using all available instruments, i.e. both the interest rates

and the group size. The reasoning is that the lender can achieve the same surplus by offering

only the safest borrower’s contract from any optimal menu. Riskier borrowers get the same

payoffs, since their incentive constraints bind at the optimum (or can be made to without

loss), and the lender also gets the same profit since its profits and borrower payoffs move

one-for-one in opposite directions.17

Proposition 1 and Lemma 3 are encouraging results, since many microlenders appear

to offer a single, standardized product, and affordable full liability seems to be a relatively

accurate description of the canonical microcredit contract.

5 The Effect of Group Size

It is known that fully efficient lending, i.e. maximal borrower surplus and complete outreach,

may not be achievable under standard individual contracts, which offer a borrower one unit

of capital with zero due after failure and an amount r due after success. Since the break-even

interest rate under full outreach is ρ/p, the condition required is that

R − psρ/p ≥ u ⇐⇒ N ≥ ps
p

≡ N1 (> 1) .

17In other words, the screening instruments are costless to use. This is the key feature of the environment
that makes standard pooling non-existence arguments inapplicable.
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So for N ∈ (1,N1), fully efficient lending is not possible with individual loans.

Also known is that monotonic group lending with n = 2 relaxes the condition for fully

efficient lending, but only partially. In particular, an affordable full liability group contract

is optimal, and even when full liability is affordable, the condition for fully efficient lending

is18

N ≥ ps(2− ps)

p(2− p)
≡ N2 (∈ (1,N1)).

Thus for N ∈ (1,N2), fully efficient lending is not achievable with group lending and n = 2.

We turn next to our main question: how does efficiency vary with group size? It turns

out that the complexity of the contract makes a monotonic relationship hard to establish

theoretically.19 However, the general tendency in efficiency as group size increases is clear,

and this is our focus.

One further assumption is used:

G >
ps
pr

. (A3)

This restriction on the gross excess return will guarantee sufficient affordability of bailout

payments (see below). Note that this bound is independent of group size n, and potentially

quite unrestrictive. Depending on pr and ps, it may require that successful borrowers only

be able to afford to pay for one other loan besides their own, or even half a loan.

Proposition 2. A large enough group size n and assumption A3 guarantee maximal borrower

surplus and complete outreach are achieved by an affordable full liability group contract.

This is our main result, and it shows that fully efficient lending is attainable if groups are

adequately large, provided sufficient affordability. This is true for any N > 1.

For intuition, it is interesting first to ignore affordability of interest payments after suc-

cess. In this case, full liability guarantees groups pay back their full obligation except when

all members fail, since even one successful member can cover the entire obligation. The

18This comes from solving ZPC 4 and Πs ≥ u simultaneously, assuming r1 = 2r0.
19In fact, there may be no monotonic relationship, as Baland et al. (2013) find in a different context (ex

post moral hazard). On group size in that setting, see Section 6.2.
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probability of all failing goes to zero as n gets large, so asymptotically all groups fully repay

and there is no cross-subsidy across groups.

However, given more reasonable affordability assumptions, full liability is possible only if

the number of failures is low enough. This creates a cross-subsidy from safe to risky groups,

since risky groups get out of full liability more often by more frequently failing in greater

numbers. In this context, what large groups do is concentrate failure rates more tightly

around the mean; and if full liability is affordable at the mean failure rate, then the contract

asymptotically implements full liability, which eliminates the cross-subsidy across groups.

This is why bailout affordability need not be high in large groups, and can even be lower

than in 2-person groups – what matters for large groups are not tail events, but average

events.

To illustrate, consider the limit case of infinitely large groups. Then if borrower i pays

r + r
1− pi
pi

=
r

pi
,

when he succeeds, he repays his own loan plus his share of the group’s defaulters’ loans (since

1 − pi need bailing out and pi are available to do so). If all borrowers can afford this rate,

there is no default risk and r = ρ. Thus all borrowers expect to pay pi(ρ/pi) = ρ, exactly

the cost of capital; i.e., risk-pricing is perfect. Regarding affordability, since the amount

due (ρ/pi) increases in risk, the maximum payment Rs must be able to cover the riskiest

borrower’s payment, ρ/pr; Assumption A3 guarantees exactly this.

This result highlights the importance of the insurance that a joint liability group can

provide. The risk in mean borrower payoffs within a group goes to zero as groups get

large; hence, larger groups provide for greater insurance, in a sense. However, the reason

that eliminating group-level risk is good here is not the standard ones, like risk aversion or

maintaining the lending relationship. The elimination of payoff risk at the group level is

valuable here because it eliminates the cross-subsidy across groups and improves risk-pricing
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– it ensures all groups can handle full liability (in the limit) and thus all pay the same,

regardless of risk-type.

This logic may give the impression that large groups give efficiency solely by a Central

Limit Theorem (“CLT”) argument that dates at least to Diamond (1984). But this would

be misleading.

Lemma 4. Regardless of group size n, if borrowers match randomly to form groups, a

group contract satisfying borrower limited liability and lender break-even can achieve no more

borrower surplus than an individual loan contract satisfying the same constraints.

This result implies that group size is a worthless tool if borrowers match randomly (which

we might expect to occur if risk-type is unobservable to other borrowers). This is true

even in parameter ranges where large n and an appropriate group contract cause the group

repayment probability to approach one.

The point is that groups, however large, by themselves accomplish nothing; and that CLT

insurance logic is not sufficient for the result we show. This is because, while sufficiently-large

groups and affordable full liability can virtually eliminate the between-group cross-subsidy,

under random matching they do not eliminate the within-group cross-subsidy – the full

liability within a group would be borne disproportionately by the safer borrowers within

that group, leaving no improvement over individual loans.

It is also informative to note that even full within-group insurance and homogeneous

matching are not by themselves sufficient – the contract must be tailored to eliminate the

between-group cross-subsidy. Consider for example the linear contract rk = r+ kc, for some

c > 0. As Ghatak (1999) has shown, this contract can be replicated with a two-person joint

liability contract, regardless of group size n. Thus, maximal efficiency is the same as with

two-person groups, and efficiency is not always attainable by a monotonic contract. The

problem here is that the contract does not eliminate the between-group cross-subsidy: the

amount due from a group varies non-negligibly with number of failures regardless of n, and

under monotonicity, riskier groups pay less.
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Thus, Proposition 2 and Lemma 4 show that adequate insurance within a group based

on sufficiently large numbers helps, but only in conjunction with other ingredients. That is,

sufficient for full efficiency in this context are both adequately-large groups and an appropri-

ate contract – to minimize the between-group cross subsidy – and homogeneous matching –

to eliminate the within-group cross subsidy. Insurance by itself is not enough for increasing

group size to be effective – good local information and resulting matching are also critical.

In sum, Section 5 has shown that affordable full liability with large enough groups can

always achieve fully efficient lending if gross payoffs are high enough. The result is strong

in that it holds for any number of types, even a continuum, and makes use of an extremely

simple, standardized debt contract, which resembles those often seen in practice.

6 Group Size in Other Contexts

Given the multiplicity of contexts in which group lending is analyzed, one might wonder

whether similar results hold in other settings. In this section, we explore group size in two

other contexts, ex ante moral hazard (unobserved project choice) as in Stiglitz and Weiss

(1981) and Stiglitz (1990), and ex post moral hazard (strategic default, limited enforcement),

as in Baland et al. (2013). We find similar results.20

6.1 Ex ante Moral Hazard and Group Size

Here we use a simplified version of the moral hazard models of Stiglitz and Weiss (1981)

and Stiglitz (1990). These models involve a hidden action problem under which the lender

cannot contract on project choice. Coupled with limited liability, this gives a borrower the

incentive to take on excess risk, since part of the risk is borne by the lender.21

Specifically, all borrowers here choose between two types of all-or-nothing projects to

20One can also show similar results under adverse selection in the De Meza and Webb (1987) framework.
21Another set of hidden action models focuses on suboptimal effort provision. Conning (2005) analyzes

the effort-provision environment and derives similar results.
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undertake with the borrowed capital, safe and risky, with 0 < pr < ps < 1,

psRs ≡ Rs > Rr ≡ prRr ,

but Rs < Rr. The risky project represents an inefficient gamble, paying off more when it

succeeds but returning less on average. We also assume that the safe project pays more

than the outside option, i.e Rs − ρ > u. Hence, the efficient lending outcome is safe project

choice, which is also the outcome of a self-financed entrepreneur or a market with perfect

information. However, given individual loan with interest rate r and limited liability, if the

interest rate is high enough the borrower will prefer the risky project to the safe:

Rr − rpr > Rs − rps ⇐⇒ r >
Rs −Rr

ps − pr
.

When can efficiency be attained by standard individual loan contracts? The break-even

interest rate in that case would be r = ρ/ps. The safe project is preferred to the outside

option at this rate, but preferred to the risky project iff22

r =
ρ

ps
≤ Rs − Rr

ps − pr
, i.e. , N ≡ Rs − Rr

ρ
≥ 1− pr

ps
≡ N1 .

Previous assumptions (Rs > Rr) only guarantee N is strictly positive, so for N ∈ (0,N1),

individual loans give rise to inefficiency, namely risky project choice or none at all.

Given group contract (r0, r1, ..., rn−1), the payoff of a borrower all of whose group chooses

the safe project is Πs (equation 3). If all groups choose the safe project, the ZPC is

n−1∑
k=0

pn−k
s (1− ps)

k

(
n− 1

k

)
rk ≥ ρ ;

at equality, this pins down the safe payoff at Rs − ρ, a level higher than the outside option.

22N and G are redefined in this section only, to make clear the tight connection between the results here
and those under adverse selection.
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A key incentive compatibility (IC) constraint must be satisfied:

Rs −
n−1∑
k=0

pn−k
s (1− ps)

k

(
n− 1

k

)
rk ≥ Rr −

n−1∑
k=0

pn−k
r (1− pr)

k

(
n− 1

k

)
rk . (6)

This IC constraint rules out the entire group collectively switching to risky projects. It also

guarantees that switching a strict subset of members to the risky project does not raise the

group payoff under an affordable full liability contract:

Lemma 5. Under an affordable full liability contract with r ∈ (0, Rs), IC constraint 6

guarantees that a group cannot achieve a higher sum of payoffs by undertaking any number

of risky projects, the remainder being safe, than it can by choosing all safe projects.

This lemma is the analog to the homogeneous-matching result in the adverse selection case,

and it relies on similar properties of the payoff function – supermodularity and symmetry.

Note also the critical assumption in IC constraint 6 that the group acts cooperatively, to

maximize total group payoffs. Thus the constraint rules out a coordinated shift toward risky

projects, but not a unilateral deviation.23 This is the same assumption made and argued for

by Stiglitz (1990), without which group lending in this context offers no improvement (see

also Conning, 2005). Thus, enforceable, cooperative behavior in project choice is the analog

here to local information on risk-type in the adverse selection setting. Without it, group size

is irrelevant here as it is under random matching in the adverse selection setting – implying

that, again, simple Central Limit Theorem insurance-based logic is not sufficient.

We next show a result similar to Proposition 2 that only requires G – defined in this

section only as Rs/ρ – to exceed a fixed bound independent of n.

Proposition 3. A large enough group size n and assumption A3 guarantee maximal borrower

surplus and complete outreach are achieved by an affordable full liability group contract.

23Though written in terms of individual payoffs, the constraint is equivalent to a group-level constraint,
that the sum of payoffs when all choose safe is no less than the sum of payoffs when all choose risky. We also
have shown that imposing this constraint rules out any improvement to the group payoff from one member
(or more) switching to risky project choice under an affordable full liability contract. But, it will not rule
out a unilateral deviation where the deviator enjoys higher payoffs than the rest of the group by essentially
free-riding on their safe behavior.
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The intuition is familiar. Larger groups and affordable full liability move toward cer-

tainty the likelihood that a group will pay its entire obligation – this allows for asymptotic

elimination of the implicit subsidy to groups that choose risky projects under limited liabil-

ity. Again, affordability of the entire group obligation need not obtain in all cases, but only

under mean failure rates, since these events dominate as n gets large.

But again, large groups are not enough. Cooperative project choice is also needed to

ensure the group is all making the same choice (as is collectively optimal) – this eliminates

within-group subsidies to risk-taking. If instead unilateral deviations were allowed, then a

borrower deviating to a risky project would enjoy a within-group subsidy to risk, and this

temptation would undermine the gains from group lending.

6.2 Ex post Moral Hazard and Group Size

Here we use the framework of Baland et al. (2013; “BSW”). Each borrower is endowed

with an identical project that requires one unit of capital and pays R when it succeeds –

with probability p ∈ (0, 1) – and pays 0 otherwise; the expected payoff is R. Contracts must

satisfy limited liability and lender break-even at gross rate ρ > 0.24

A key difference from our model is that output is unobserved by the lender, implying

repayment cannot be directly enforced. The lender gives repayment incentives by imposing a

non-pecuniary penaltyK on a borrower who defaults. This implies that a successful borrower

will repay as long as K exceeds the amount due, and otherwise default. Lender enforcement

capacity is limited, i.e. K is capped by K > 0. Penalties are necessary to support lending,

but they lead to inefficiency since they are imposed on unlucky borrowers in equilibrium.

Thus, borrower welfare is tightly connected to minimizing equilibrium imposition of penalties

while making repayment incentive compatible.

Heterogeneity in borrower wealth, w ∈ [0, 1), the second key difference from our model,

implies that borrowers have different needs for outside capital to fund their projects. Rela-

24The outside labor option is zero.

23



tively wealthy agents can self-finance most of the project, while relatively poor agents will

need larger loans. However, given limited enforcement capacity of the lender, there is a limit

on feasible loan size. Thus, relatively poor agents may be unable to borrow.

Consider individual lending. A contract with loan size L and no strategic default involves

break-even interest rate r = ρ/p and requires K ≥ Lρ/p to prevent strategic default. This

implies that the maximum supportable loan size is pK/ρ ≡ L. Note that L < 1 under

BSW’s assumption

K <
ρ

p
.

Thus, given limited enforcement, individual loans cannot reach low-wealth borrowers (those

with w < 1− L).

Maximal payoffs for those who can borrow are

ΠI(w) = R− ρw − pLρ/p− (1− p)K = R − ρ− 1− p

p
ρ(1− w) .

The first expression subtracts opportunity cost of own capital, loan payment with probability

p, and penalty K with probability 1 − p; the second substitutes in the minimum penalty

given loan size L, i.e. Lρ/p, and the minimum loan size L = 1−w. BSW’s assumption that

R ≥ ρ+ (1− p)K

guarantees that all borrowers with w ≥ 1 − L get positive payoffs from borrowing. Still,

payoffs are suboptimal; they equal the first-best payoff, ΠFB = R − ρ, minus expected

penalties – interest rate ρ/p, times loan size 1− w, times probability of failure 1− p.

The focus of BSW is on how full liability group loans compare to individual loans in both

outreach – i.e. maximum feasible loan L – and borrower welfare – i.e. payoffs for those

who do borrow. In addition, they consider how the availability of social sanctions and the

size of the group affect these comparisons. With respect to group size, however, they focus
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mainly on non-monotonicities rather than exploring outcomes when group size can be set

freely. Our goal here is to supplement their work, and in so doing to show robustness of the

logic of this paper in a different setting.

The key result of BSW assuming no borrower social capital (BSW-Proposition 2) is that

group lending achieves lower outreach than individual lending, but can sometimes provide

higher welfare for the borrowers it does reach (the wealthier ones). We show here that when

group size is unrestricted, group lending can achieve arbitrarily close to the level of outreach

that individual loans can, and can eliminate arbitrarily much of the gap between individual

loan payoffs and first-best payoffs. Thus, group lending can provide better payoffs for almost

every agent. To show this, let ΠG(w, n) be borrowing payoffs for an agent with wealth w in a

borrowing group of size n, let GAPG(w, n) ≡ ΠFB −ΠG(w, n) be the shortfall from first-best

payoffs in such a group contract, and let GAPI(w) ≡ ΠFB − ΠI(w) = ρ(1− w)(1− p)/p be

the shortfall from first-best payoffs in an individual contract.

Proposition 4. Fix any L
′ ∈ (0, L) and ε ∈ (0, 1). A large enough group size n guarantees

that a group contract can feasibly lend all loan sizes L ∈ (0, L
′
) and, for all borrowers,

eliminate all but ε of the inefficiency in individual loan payoffs (GAPG(w, n) < ε GAPI(w)).

Thus group lending can be made to dominate individual lending for all but an arbitrarily

small interval of borrower wealth levels, by choosing an adequately large group size. The

intuition is that larger groups cause the the probability of group default to vanish, and with

it the equilibrium imposition of penalties (raising borrower payoffs) and the chance that a

successful borrower chooses to default (raising outreach).

This result may seem to contradict BSW-Proposition 6, which shows that welfare can

sometimes be increased by decreasing group size. But BSW-Proposition 6 is a local result

establishing the possibility of non-monotonicity; it says that in some cases, borrower welfare

can be higher under group size n′ < n than under group size n. What Proposition 4 implies

is that there also exists a group size n′′ > n such that group size n′′ gives borrowers higher

welfare than group sizes n and n′. In other words, while in some cases welfare can be
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improved with a smaller group, it can be improved even more by a larger group.25

BSW also introduce social sanctions, as an extra penalty γ that can be imposed on a

group member who defaults even though he can repay. This extra penalty raises a borrower’s

willingness to repay because his total sanction after strategic default is K + γ. It is also an

attractive penalty because it is never imposed in equilibrium – unlike the lender, borrowers

can observe each other’s output realizations and do not impose sanctions after project failure.

BSW find that the availability of social sanctions can improve outreach and borrower

welfare under group lending; more surprisingly, they find that however strong the social

sanctions, group lending may not achieve greater outreach than individual loans if p is high

enough (BSW-Proposition 4). This seemingly places a limit on how well group lending can

do in some cases, even with arbitrarily large social sanctions available.

But this is with fixed group size. We show here that for any p and any amount of

social sanctions, group lending with adequately large groups strictly dominates individual

lending in both outreach and payoffs, achieving borrower payoffs arbitrarily close to first-

best. Further, if social sanctions are large enough, group contracts can get arbitrarily close to

fully efficient lending – complete outreach and borrower payoffs arbitrarily close to first-best.

Proposition 5. A) Fix any ε ∈ (0, 1) and any social sanction γ > 0. There exists an

L
′
> L, such that a large enough group size n guarantees that a group contract can feasibly

lend all loan sizes L ∈ (0, L
′
) and, for all borrowers, eliminate all but ε of the inefficiency

in individual loan payoffs (GAPG(w, n) < ε GAPI(w)).

B) Fix any ε ∈ (0, 1) and assume γ > ρ/p−K. A large enough group size n guarantees that

a group contract can feasibly lend all loan sizes L ∈ (0, 1] and, for all borrowers, eliminate

all but ε of the inefficiency in individual loan payoffs (GAPG(w, n) < ε GAPI(w)).

The intuition for A is clear, since even without social sanctions, group lending can get

arbitrarily close to individual lending in outreach; a little extra social enforcement is enough

to give group lending the advantage. The intuition for B is that if the social sanction plus

25This is also seems to be illustrated in the BSW simulations; see their Figure 1.
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bank sanction are enough to incentivize repayment of ρ/p, (K + γ > ρ/p), then large groups

can do the rest, ensuring that with near certainty this is the amount owed.26

In short, we find that large enough group size gives group lending a significant advantage

over individual lending even without any social capital; and with sufficient social capital,

group lending approaches fully efficient lending. These results are remarkably similar to

those obtained in the other contexts. Perhaps the most striking difference is that in this

context as opposed to the other two, group lending with large enough groups does not

require any social capital to significantly improve borrower welfare compared to individual

lending.27 It is also striking that in all three contexts, group lending with adequately-sized

groups, in conjunction with a sufficient social asset, approaches fully efficient lending.

7 Realistic Group Sizes

The results of this paper show that affordable full liability contracts with large enough

groups achieve efficient lending, or arbitrarily close to it. But, how large is large enough?

This is a relevant question because the larger is group size, the less plausible are some of

the papers’ key assumptions. Namely, the quality of local information and/or the ability to

enforce cooperative agreements and impose social sanctions may deterioriate as group size

gets large. If so, efficiency may not always be attainable, and tradeoffs may exist that give

an interior optimal group size.

The goal of this section is two-fold. First, we formalize the preceding argument theo-

retically in the baseline context of adverse selection. We assume information quality (in

particular, the ability to match homogeneously) deteriorates with group size, and show that

an interior group size does better than either extreme.28 Second, we simulate the model and

show that the benefits of larger group size obtain for reasonable group sizes. Thus, the logic

26Note that if the interest rate is ρ, then in a “large” group a successful borrower owes ρ+ ρ(1− p)/p, the
latter term capturing his share of bailout payments. This equals ρ/p.

27However, it may be that an assumption on repayment coordination is implicit.
28Conning (2005) also shows an interior optimal group size in a moral hazard context where social sanctions

available to enforce cooperative agreements are bounded.
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of the asymptotic results is applicable not only in the limit.

7.1 Information Quality and Group Size

While a full analysis is beyond the scope of this paper, we explore briefly the question of how

optimal group size is determined when information quality declines with group size. Infor-

mation quality is formalized in a somewhat mechanical way; the thrust of the assumptions,

though, is simply that larger group size makes homogeneous matching more difficult.29

We imagine that a matching equilibrium occurs, along with irreversible borrowing de-

cisions; then, before payoffs are realized, each borrower has an identical and independent

probability of being removed from his group and being re-placed in another randomly se-

lected borrowing group. The replacement process preserves group size. Every borrower’s

probability of not being replaced is π(n), with π(n) > 0 and limn→∞ π(n) = 0. Thus, the

expected fraction of type-pi borrowers that remain after replacement in an initially homo-

geneous type-pi group is strictly positive, but approaches zero in n. Borrowers anticipate

the replacement process in the group formation process and in calculating payoffs to decide

whether to borrow.

We again restrict attention to ex ante (i.e. pre-replacement) homogeneous group for-

mation, and since our focus will be on when fully efficient lending is achievable, we write

the conditions corresponding to all types borrowing. The ex post (i.e. post-replacement)

expected type of a fellow group member of a type-pi borrower is

p̃i ≡ π(n) pi + [1− π(n)]p ,

where p is the average risk-type and dependence of p̃i on n is suppressed. This expression

holds since with probability 1− π(n) the initially identical borrower has been replaced with

29This could be the simple consequence of living in finite-sized communities with only a minority of
households interested in borrowing. The larger the group size, the less homogeneous groups would be even
with frictionless matching. Introducing search/matching frictions could amplify this effect.
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a borrower drawn at random from the pool of borrowers, i.e. from the entire distribution

of types. Since replacement happens independently across all borrowers, one can essentially

consider a fellow group member’s ex post type to be p̃i if his ex ante type was pi.

Consider the ex post payoff of a borrower of type i. If he is not replaced, it is

R− pi

n−1∑
k=0

p̃n−k−1
i (1− p̃i)

k

(
n− 1

k

)
rk ,

since he pays rk iff he succeeds – probability pi – and k of his n− 1 fellow group members

fail – probability p̃n−1−k
i (1 − p̃i)

k
(
n−1
k

)
. If he is replaced into a group of ex ante type j, his

payoff is the same as the above with p̃j in place of p̃i; since he is equally likely to be replaced

into any group, his payoff if replaced involves the expectation over all types p̃j :

R− pi

n−1∑
k=0

p̃n−k−1(1− p̃)k
(
n− 1

k

)
rk .

Since the replacement probability is 1− π(n), the expected payoff is

R− pi

n−1∑
k=0

[
π(n) p̃n−k−1

i (1− p̃i)
k + (1− π(n)) p̃n−k−1(1− p̃)k

](n− 1

k

)
rk . (7)

The zero-profit constraint can be derived analogously:

n−1∑
k=0

[
π(n) pp̃n−k−1(1− p̃)k + (1− π(n)) pp̃n−k−1(1− p̃)k

](n− 1

k

)
rk =

n−1∑
k=0

[
p̃n−k(1− p̃)k

](n− 1

k

)
rk ≥ ρ .

(8)

Proposition 6. If G > ps/p and if local information quality is positive but approaching zero

as groups get large, then there exist integers n∗ and n, with 1 < n∗ < n, such that fully

efficient lending is achieved over a strictly larger parameter space (R, u, ρ) by group lending

with n = n∗ than by both a) individual lending and b) group lending with n ≥ n.
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Thus, the best shot at full efficiency is by group lending with a finite group size.30

This result formalizes a potentially countervailing negative aspect of larger groups, the

deterioration of match quality. If matching degenerates toward random matching as groups

get large enough (i.e. limn→∞ π(n) = 0), then large groups lose their value, approaching

equivalence with individual lending (see Lemma 4). This guarantees that some interior

group size with a somewhat effective matching outcome will outperform both individual

lending and group lending with large but ineffective groups.

The rate at which matching deteriorates – more generally, the shape of π(n) – will no

doubt play a significant role in optimal group size. Thus, one might expect smaller optimal

group sizes when, all else equal, the population within which matching occurs is smaller, and

also when information is relatively localized or limited within a given matching population.

7.2 Simulations

We turn to numerical simulations of the model to assess how well the theoretical mechanism

works at reasonable group sizes. The model has a limited number of parameters, which can be

broken into two categories, risk and return, respectively. The risk parameters are the upper

and lower bound on risk-type, pr and ps, and the distribution function f(p). The return

parameters are the expected gross project return, R, the return to labor without borrowing,

u, and the lender’s required return to capital ρ. Equivalently, the return parameters can be

summarized with ρ, gross excess return G (R/ρ), and net excess return N ((R− u)/ρ).

The literature gives a fair amount of guidance on reasonable return parameters. For ρ, we

assume 1.1, meaning the microlender requires an expected 10% return to break even. This

follows de Quidt et al. (2012a, 2012b), and appears reasonable given the higher operating

costs required for microlending (see e.g. Ahlin et al., 2011). Recent literature estimating

returns to capital in developing countries helps shed light on the project return parameters,

30At the expense of significantly more notation, it is also possible to show a related result, that borrower
surplus is maximized by an interior group size.
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where MPK estimates for microentrepreneurs in the 60% to 100% range are not uncommon.31

A complication arises in how to interpret these estimated returns to capital – are they

estimated net of the full opportunity cost of labor, or not? Often, it is difficult empirically

to fully account for the increased or subsituted labor/effort required to use the additional

capital. The question for this study is whether the rates of return in the literature apply to

the gross or net excess return, G or N. The issue is not too critical, however, since rates

of return appear to vary a lot across developing country contexts, even within countries.32

Accordingly, we allow for various levels of both N and G in the simulations. Still, in line

with our reading of the empirical work, we concentrate on G in the upper ranges here (1.7

to 2.3) and focus on N below these ranges.

The literature is much less developed on risk parameters, especially since here the key

parameters are on heterogeneity in unobserved project risk across households. Our approach

here is to assume a standard distribution – the uniform – and what appear to be reasonable

bounds on risk-types: [0.5, 0.99]. We verify the reasonability of the default rates that this

distribution delivers.

FIGURE 1 ABOUT HERE (see Appendix)

Our main result was that for any N > 1 and G > ps/pr, fully efficient lending – equiva-

lently, complete outreach – is attained by large enough groups. The left panel of Figure 1

shows how the cutoff N, above which complete outreach is achieved, varies with n. It does

so for G ∈ {1.7, 2.0, 2.3}, which essentially varies affordability of full liability. One can see

that in all cases, larger groups extend the parameter space over which complete outreach is

possible. It seems clear that the N cutoff is approaching 1 for G ∈ {2.0, 2.3}, both of which

values satisfy G > ps/pr(= 1.98). However, when G = 1.7, which does not satisfy G > ps/pr,

the cutoff is not approaching 1 – there will remain a neighborhood of N above 1 such that

fully efficient lending is not achieved no matter how large are groups.

31De Quidt et al. (2012a, 2012b) use a 60% rate of return, while Banerjee and Duflo (2005) use 100% for
small firms.

32This a major theme of Banerjee and Duflo (2005).
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Default rates are also reasonable above the N cutoffs, at least as group size moves away

from 1 and 2, equaling about 10% when the cutoff is 1.1 and 5% when it reaches 1.05,

and approaching 0% as the cutoff approaches 1. At group size of 5, default above the N

cutoff equals 9%, 6%, and 4%, respectively, for G ∈ {1.7, 2.0, 2.3}. What is also clear in

Figure 1 is that much of the action is over the range of reasonable group sizes – only for net

excess returns below 2-3% can a group of size 5-10 not achieve full outreach, and this even

if Assumption A3 barely holds (G = 2.0). Further, the simulations show that for a fixed N,

greater affordability (higher G) can substitute for larger group size, lowering the need for

large groups in order to achieve fully efficient lending.33

The right panel of Figure 1 is for the model of Section 7.1, where local information

deteriorates with group size. Specifically, we let the probability of remaining in one’s group

be π(n) = eλ(1−n), with λ = 0.02. This implies that in a group of size 10, on average just

under 2 members are of the wrong risk-type. Figure 1 demonstrates that, as anticipated from

Proposition 6, the group size that achieves complete outreach over the greatest parameter

space is finite. Interestingly, it is also quite moderate – 8, 6, and 4, respectively, for G ∈
{1.7, 2.0, 2.3}. Default rates are similar to the first panel, showing that large groups are

still eliminating group default – but as was shown, the problem is that the within-group

cross-subsidy is growing as matching deteriorates, working against efficiency.

The first set of simulations finds conditions for fully efficient lending – complete outreach

– as group size varies. The second set solves for maximum achievable outreach as a function

of group size, for given N. Figure 2 graphs outreach – percent of total borrowers that are

reached at the optimum – against group size, using the same three values of G and two

panels, with and without information frictions. N is set to 1.1, i.e. net excess return is 10%.

FIGURE 2 ABOUT HERE (see Appendix)

In the left panel, we see a similar theme, that large groups allow for greater outreach

(efficiency), and that reasonable group sizes are able to attain full efficiency. Most surprising

33De Quidt et al. (2012a, b) comment on a similar phenomenon in their ex post moral hazard context.
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is how dramatically outreach can increase once a critical group size is reached. Outreach

jumps from relatively low levels to 100% once a critical group size is reached – 5, 4, and 2,

respectively, for G ∈ {1.7, 2.0, 2.3}. This jump is occurring here because it is easiest to attract

either the left tail or the entire distribution. As group size increases, risk-pricing improves

and the size of the left tail that can be attracted gradually increases; but at the same time,

the entire distribution is getting closer to within reach. When it is finally attainable, outreach

jumps to 100%.

The results with information frictions, in the right panel, are similar in that past a cutoff

group size, outreach skyrockets to 100%. The critical group sizes are 4 for G = 2.3 and 5

for G = 2.0. Of course, the results differ in that outreach begins to decline as group size

continues to grow – beyond 8 or 9 for G = 2.0 and G = 2.3, respectively. However, the decline

is more gradual than the buildup; it appears more costly to be a bit smaller than optimal

than a bit larger.

In sum, we draw several conclusions from the simulations. First, the asymptotic argu-

ments are applicable at reasonable group sizes, and even in some cases when the affordability

assumption is not met. Second, higher gross returns relax affordability and can substitute for

larger group size. Third, there can be a “discontinuity” in efficiency as group size increases,

with efficiency jumping substantially as a typically moderate threshold is reached. Overall,

the results help rationalize observed group sizes, which are often four to ten, as not just

incidental but perhaps critical to the effective use of group lending.

8 Conclusion

We have explored the usefulness of what is perhaps an underemphasized tool that lenders

have in improving lending efficiency – group size. Our main progress has been in reaching

a deeper understanding of the benefits of larger group size, not because we believe the

costs to be unimportant, but because as a first step we have mostly taken the models and
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assumptions off the shelf. However, we do explore costs of larger groups as well, sketching

an approach toward modeling optimal group size. More work bringing costs and benefits

together is certainly called for.

The results may be taken not as a critique of the majority of the literature with group

size n = 2, but as a reminder that this assumption shuts down one potentially important

tool the lender has to increase lending efficiency. Further, since group size is shown here to

be a tool that can interact in interesting ways with other tools the lender may be able to

harness (e.g. social capital), there is also a caveat here that statements made for smaller

groups may not hold at larger group size.

Beyond the scope of this paper are two factors that may be important in relevant lending

environments. First, borrowers are assumed risk-neutral, not risk-averse. Intuitively, large

groups would have an additional appeal under risk aversion, since they help stabilize borrower

payoffs via intragroup insurance. Thus large groups can also be a way to decrease the added

risk associated with group lending (a drawback pointed out by Stiglitz, 1990). Second,

projects are assumed to be statistically independent here. We conjecture, however, that

correlated risk that affects all types symmetrically need not change the results. Even if

it meant infinitely large groups could default with positive probability due to correlated

risk, as long as this probability is the same across safe and risky groups, there would be

no resulting cross-subsidy. Hence, the extra default risk could be priced into all borrowers’

loans uniformly, and risk-pricing would still be asymptotically perfect. But, if correlated risk

changed group default probabilities unevenly across safe and risky borrowers, and if it were

great enough to imply that groups default with a probability bounded away from zero, then

it seems perfectly efficient lending would no longer be achievable. Future work can take up

these two issues more fully.

The paper suggests a number of directions for empirical work. The implications about

complementarity between social capital and group size in improving lending outcomes could

be explored; among other goals, they might be useful in testing across models, since the
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degree of complementarity seems to vary with the underlying frictions. The results also can

be used to form hypotheses about observables in an environment, e.g. village population

or density, social information and enforcement capabilities, or rates of return, that help

determine the costs and benefits of larger group size along lines suggested by this theory.

In short, the paper argues that larger groups can take greater advantage of local informa-

tion in an adverse selection setting, and local coordination/enforcement in a moral hazard

setting – though there are likely to be limits. From a positive standpoint, this helps explain

why observed group sizes are almost invariably larger than two. It also points to potential

factors behind optimal group size that can give rise to some of the variation observed in

contemporary micro-lending.

35



References

[1] Christian Ahlin. Matching for credit: Risk and diversification in Thai microcredit
groups. BREAD Working Paper 251, December 2009.

[2] Christian Ahlin. Group formation with fixed group size: Complementarity vs substi-
tutability. BREAD Working Paper 337, April 2012.

[3] Christian Ahlin, Jocelyn Lin, and Michael Maio. Where does microfinance flourish? Mi-
crofinance institution performance in macroeconomic context. Journal of Development
Economics, 95(2):105–120, July 2011.

[4] Christian Ahlin and BrianWaters. Dynamic lending under adverse selection with limited
borrower commitment: Can it outperform group lending? Working Paper, September
2013.

[5] Beatriz Armendariz and Christian Gollier. Peer group formation in an adverse selection
model. Economic Journal, 110(465):632–643, July 2000.

[6] Beatriz Armendariz and Jonathan Morduch. Microfinance beyond group lending. Eco-
nomics of Transition, 8(2):401–420, 2000.

[7] Jean-Marie Baland, Rohini Somanathan, and Zaki Wahhaj. Repayment incentives
and the distribution of gains from group lending. Journal of Development Economics,
105:131–139, November 2013.

[8] Abhijit V. Banerjee and Esther Duflo. Growth theory through the lens of development
economics. In Handbook of Economic Growth I, pages 473–552. 2005.

[9] Timothy Besley and Stephen Coate. Group lending, repayment incentives and social
collateral. Journal of Development Economics, 46(1):1–18, February 1995.

[10] Yeon-Koo Che. Joint liability and peer monitoring under group lending. Contributions
to Theoretical Economics, 2(1), 2002.

[11] Jonathan Conning. Monitoring by delegates or by peers? Joint liability loans under
moral hazard. Working Paper, June 2005.

[12] David de Meza and David C. Webb. Too much investment: A problem of asymmetric
information. Quarterly Journal of Economics, 102(2):281–292, May 1987.

[13] Jonathan de Quidt, Thiemo Fetzer, and Maitreesh Ghatak. Group lending without joint
liability. Working Paper, July 15, 2012a.

[14] Jonathan de Quidt, Thiemo Fetzer, and Maitreesh Ghatak. Market structure and bor-
rower welfare in microfinance. Working Paper, September 20, 2012b.

[15] Morris H. DeGroot. Probability and Statistics. Addison Wesley, 2nd edition, 1986.

36



[16] Douglas W. Diamond. Financial intermediation and delegated monitoring. Review of
Economic Studies, 51(3):393–414, July 1984.

[17] Shubhashis Gangopadhyay, Maitreesh Ghatak, and Robert Lensink. On joint liability
lending and the peer selection effect. Economic Journal, 115(506):1005–1015, October
2005.

[18] Maitreesh Ghatak. Group lending, local information and peer selection. Journal of
Development Economics, 60(1):27–50, October 1999.

[19] Maitreesh Ghatak. Screening by the company you keep: Joint liability lending and the
peer selection effect. Economic Journal, 110(465):601–631, July 2000.

[20] Maitreesh Ghatak and Timothy W. Guinnane. The economics of lending with joint
liability: Theory and practice. Journal of Development Economics, 60(1):195–228, Oc-
tober 1999.

[21] Robert D. Innes. Limited liability and incentive contracting with ex-ante action choices.
Journal of Economic Theory, 52(1):45–67, October 1990.

[22] Jean-Jacques Laffont. Collusion and group lending with adverse selection. Journal of
Development Economics, 70(2):329–348, April 2003.

[23] Jean-Jacques Laffont and Tchetche N’Guessan. Group lending with adverse selection.
European Economic Review, 44(4-6):773–784, May 2000.

[24] Christian Laux. Limited-liability and incentive contracting with multiple projects.
RAND Journal of Economics, 32(3):514–526, Autumn 2001.

[25] Ashok S. Rai and Tomas Sjostrom. Is grameen lending efficient? repayment incentives
and insurance in village economies. Review of Economic Studies, 71(1):217–234, 2004.

[26] Joseph E. Stiglitz. Peer monitoring and credit markets. World Bank Economic Review,
4(3):351–366, September 1990.

[27] Joseph E. Stiglitz and Andrew Weiss. Credit rationing in markets with imperfect infor-
mation. American Economic Review, 71(3):393–410, June 1981.

[28] Eric Van Tassel. Group lending under asymmetric information. Journal of Development
Economics, 60(1):3–25, October 1999.

37



Appendix

Notation, and Central Limit Theorem (CLT) Fact and Corollary.
For any n > 0, let G ∈ [pr, ps]

n be n agent types. Let Bn,j,G denote the probability of j
or more successes in n independent trials, where the respective success probabilities of the
n trials come from the n types in G. Let Bn,j,p be the probability of j or more successes
in n independent trials all with success probability p. Similarly, let B̃n,j,G and B̃n,j,p be the
probabilities of exactly j successes in n independent trials with the success probabilities as
defined in Bn,j,G and Bn,j,p, respectively.

Consider an affordable full liability contract (“AFLC”; equation 5) with group size n and
interest rate r ∈ [0, Rs], and define k∗(n, r) as the minimum number of group failures for
which full liability is unaffordable (or just affordable); more precisely, partial brackets 
 �
denoting the ceiling function, let

k∗(n, r) ≡
⌈
n

(
1− r

Rs

)⌉
. (9)

The following CLT Fact follows from the CLT (e.g. DeGroot, 1986, p.275). The proof
is standard and available upon request. For some function j(n),

lim
n→∞

j(n)

n
< p =⇒ lim

n→∞
Bn,j(n),p = 1 .

lim
n→∞

j(n)

n
> p =⇒ lim

n→∞
Bn,j(n),p = 0 .

(10)

CLT Corollary. Assume psRs/ρ > ps/pr; equivalently, G > ps/pr. For any p ∈ [pr, ps],

lim
n→∞

r(n) = ρ =⇒ lim
n→∞

Bn,n−k∗(n,r(n))+1,p = 1 .

κ ∈ (1,G/(ps/pr)) =⇒ lim
n→∞

Bn,n−k∗(n,κρ)+1,p = 1 .

Proof. Since pr ≤ p, by the CLT Fact it is sufficient to show that, assuming both hypotheses,

max

{
lim
n→∞

n− k∗(n, r(n)) + 1

n
, lim
n→∞

n− k∗(n, κρ) + 1

n

}
< pr , i.e.,

κρ

Rs
< pr ,

which is guaranteed by κ < G/(ps/pr).

Proof of Lemma 1. Monotonicity guarantees that group payments are increasing in the
number of successes. The distribution of number of successes of safer groups stochastically
dominates that of riskier groups. Thus, in expectation safer groups pay more and earn lower
net payoffs. Since agent payoffs in homogeneous-matching equilibrium are 1/n times group
payoffs, in expectation safer borrowers pay more and earn lower net payoffs. Thus, if an agent
of type p̂ borrows, he earns more than u; so do all riskier types, and thus they also borrow.

Proof of Lemma 2. The Proof uses notation defined in the beginning of the Appendix.
The Proof consists of demonstrating strictly positive cross-partials of the group payoff func-
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tion, ΠG; since ΠG is smooth in the group risk-type pi’s, homogeneous group formation is
then guaranteed as the unique stable match (Ahlin, 2012, Proposition 2).

First consider the case where n = 2, and group types are (px, py). One can write the
group payoff function and cross-partial, respectively, as

ΠG = 2R− (px + py)r1 + 2pxpy(r1 − r0) and
∂2ΠG

∂px∂py
= 2(r1 − r0) .

This is strictly positive since r ∈ (0, Rs), which guarantees r0 < r1 in an AFLC.
For the remainder of the proof, fix n > 2 and set of n types G = (p1, p2, ..., pn) ∈ [pr, ps]

n.
Let N be {1, 2, ..., n}. Suppressing dependence of k∗ on r and n, the group payoff function
from borrowing under an AFLC for this set of n types is

ΠG = nR − nrBn,n−k∗+1,G −
n∑

j=k∗
(n− j)RsB̃n,n−j,G ,

since the lender gets nr if there are less than k∗ failures (more than n− k∗ successes), and
otherwise, if there are j failures, gets Rs from n− j borrowers.

First consider the case where k∗ = n. The group payoff can then be written

ΠG = nR− nrBn,1,G = nR− nr

[
1−

∏
j∈N

(1− pj)

]
,

since the group pays nr unless all members fail. Choosing any x, y ∈ N , the cross-partial is

∂2ΠG

∂px∂py
= nr

∏
i∈N\{x,y}

(1− pi) > 0 .

Thus all cross-partials are strictly positive.
Finally, consider the case in which k∗ ≤ n − 1, and note that r < Rs implies k∗ ≥ 1.

Choose any x, y ∈ N and let G̃ be a vector of n − 2 types, equaling G with one borrower
each of type px and py removed. Note that

Bn,n−k∗+1,G = Bn−2,n−k∗+1,G̃ + (px + py − pxpy)B̃n−2,n−k∗,G̃ + pxpyB̃n−2,n−k∗−1,G̃ .

because the number of group successes is at least n− k∗ + 1 iff one of three disjoint events
occurs: the number of successes in the rest of the group G̃ is at least n− k∗+1; the number
of successes in G̃ is n−k∗ and at least one of borrowers x and y succeed; and the number of
successes in G̃ is n− k∗ − 1 and both borrowers x and y succeed. From this, it is clear that

∂2Bn,n−k∗+1,G

∂px∂py
= B̃n−2,n−k∗−1,G̃ − B̃n−2,n−k∗,G̃ .
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By similar reasoning,

B̃n,n−j,G = pxpyB̃n−2,n−j−2,G̃ + [px(1− py) + py(1− px)]B̃n−2,n−j−1,G̃

+ (1− px)(1− py)B̃n−2,n−j,G̃ ,

so
∂2B̃n,n−j,G

∂px∂py
= B̃n−2,n−j−2,G̃ − 2B̃n−2,n−j−1,G̃ + B̃n−2,n−j,G̃ .

One can use this to show the following simplification:34

n∑
j=k∗

∂2B̃n,n−j,G

∂px∂py
(n− j) = (n− k∗)B̃n−2,n−k∗,G̃ − (n− k∗ + 1)B̃n−2,n−k∗−1,G̃ .

Putting these facts together gives

∂2ΠG

∂px∂py
= [Rs(n− k∗ + 1)− nr]B̃n−2,n−k∗−1,G̃ + [nr − Rs(n− k∗)]B̃n−2,n−k∗,G̃ .

Using the definition of k∗ from equation 9, there exists an ε ∈ [0, 1) such that

k∗ = n

(
1− r

Rs

)
+ ε.

Incorporating this into the previous expression gives

∂2ΠG

∂px∂py
= Rs

[
(1− ε)B̃n−2,n−k∗−1,G̃ + εB̃n−2,n−k∗,G̃

]
> 0 ,

the strict inequality because (1− ε) > 0 and 1 ≤ k∗ ≤ n− 1, so B̃n−2,n−k∗−1,G̃ > 0. Thus all
cross-partials are strictly positive.

Proof of Proposition 1. Define an “admissible group contract” as a group contract sat-
isfying monotonicity, homogeneous matching, and limited liability. Partly due to Lemma 2,
all AFLCs with r ∈ (0, Rs) are admissible group contracts.

We will show that for any admissible group contract C satisfying the ZPC, there is an
admissible AFLC satisfying the ZPC and delivering at least as much borrower surplus. Fix
such a contract C. First, consider the case that C attracts no borrowers. To be admissible
C must involve rk < Rs for at least one k ∈ {0, 1, ..., n− 1} (otherwise unique homogeneous
matching does not obtain). Then, there is clearly an AFLC with r close enough to Rs that
give all borrowers worse payoffs, and thus under which no borrowers opt in.

Second, consider the case where C attains maximal borrower surplus. This implies it
satisfies ZPC 4. Now, one can show that the admissible group contract that maximizes

34This simplifies in part because terms B̃n−2,m,G̃ where 1 ≤ m ≤ n − k∗ − 2, if such exist, appear three

times in the sum (when j = m,m+1,m+2) with coefficients that cancel out; B̃n−2,0,G̃ appears twice (unless

k∗ = n− 1) with coefficients that cancel out; and B̃n−2,−1,G̃ = 0.
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the safest (“safe”) borrower’s payoff subject to ZPC 4 is the AFLC that satisfies ZPC 4 at
equality.35 To see this, note that the ZPC slope in (rk−1, rk) space is

drk
drk−1

= −pn−k+1(1− p)k−1
(
n−1
k−1

)
pn−k(1− p)k

(
n−1
k

)
and the slope of the safe-borrower indifference curve is, using payoff expression 3,

drk
drk−1

= −pn−k+1
s (1− ps)

k−1
(
n−1
k−1

)
pn−k
s (1− ps)k

(
n−1
k

) = − ps
(
n−1
k−1

)
(1− ps)

(
n−1
k

) .
Both are linear, and one can show that the indifference curve is steeper than the ZPC.36 Thus,
ignoring constraints, the safe-borrower payoff can be strictly raised by increasing rk and
lowering rk−1 along the ZPC. This implies that the admissible group contract that maximizes
the safe-borrower payoff subject to the ZPC sets all interest rates rk, k ∈ {1, 2, ..., n− 1}, at
their upper bounds, which are provided by the monotonicity or limited liability constraints.
(If not, there would exist an rk strictly below its upper bounds and a corresponding rk−1

strictly above its lower bound, which could be adjusted along the ZPC to raise safe-borrower
payoffs.) Equivalently, it is an AFLC. Further, it is the one that satisfies ZPC 4 at equality;
otherwise r could be lowered while satisfying all constraints, raising safe payoffs.

Again, since C attains maximal borrower surplus, it satisfies ZPC 4 and delivers the safe
borrower a borrowing payoff of at least u. Now consider the AFLC that satisfies ZPC 4 at
equality. It also delivers the safe borrower a payoff of at least u, since it is the admissible
contract that maximizes the safe borrower payoff subject to ZPC 4. By Lemma 1, all other
types also borrow under this AFLC. Hence, all borrowers are included and maximal borrower
surplus is attained by the AFLC satisfying ZPC 4 at equality.

Finally, consider the case where C attracts some but not all agents. By Lemma 1, the
set of borrowing types can be written [pr, p̂], with p̂ ∈ (pr, ps). A borrower of type p̂ earns
u under C – if he earned more, then borrowers of type p in a neighborhood above p̂ would
also earn more than u, since borrower payoffs are continuous in risk-type, which contradicts

35Such an AFLC exists and is unique. Note that the left-hand side of ZPC 4, call it LHS, is contained
within (0, pRs) for any admissible group contract; these bounds are because all interest rates rk must be
in [0, Rs], and the set is open because not all interest rates can be equal under the unique homogeneous
matching constraint. The set of admissible AFLCs is indexed by r ∈ (0, Rs), and there exists an AFLC that
can raise any amount in (0, pRs). This is clear because as r → 0, LHS → 0; as r → Rs, LHS → pRs;
and because the rk’s in an AFLC, and thus LHS too, are continuous in r. Thus if C can satisfy ZPC 4, an
admissible AFLC also can. Uniqueness is clear because LHS is strictly increasing in r for r ∈ (0, Rs).

36Note that

ps
(
n−1
k−1

)
(1 − ps)

(
n−1
k

) >
pn−k+1(1 − p)k−1

(
n−1
k−1

)
pn−k(1− p)k

(
n−1
k

)
⇐⇒

∫ ps

pr

psp
n−k(1− p)kf(p)dp >

∫ ps

pr

(1 − ps)p
n−k+1(1− p)k−1f(p)dp

⇐⇒
∫ ps

pr

(ps − p)pn−k(1− p)k−1f(p)dp > 0 .
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the set of borrowing types being [pr, p̂].
Now by above logic, given set of borrowing types [pr, p̂], the type-p̂ borrowing payoff

is uniquely maximized subject to the appropriate ZPC – identical to ZPC 4, except the
expectation is conditional on p ∈ [pr, p̂] – by the AFLC satisfying this ZPC at equality.37

Thus, if C is not an AFLC, there exists an AFLC that gives the lender zero profits on
borrowing types [pr, p̂] and delivers a borrower of type p̂ a payoff strictly greater than u.
But then, in this AFLC, a) agents of type p in a neighborhood above p̂ would also earn
strictly more than u by borrowing, by continuity, and thus choose to borrow; and b) the
ZPC for this larger set of borrowers would be satisfied, by Lemma 1, since this AFLC satisfies
the ZPC assuming a worse pool of borrowers, [pr, p̂]. Since all surplus from the loans to types
[pr, p̂] goes to the borrowers (guaranteed because the AFLC exactly breaks even over these
types), and strictly positive surplus goes to some borrowers above p̂, this proves that strictly
greater borrower surplus is available with an AFLC.

The above arguments guarantee two things. First, since every contract satisfying all con-
straints is at least weakly dominated by an AFLC that satisfies all constraints, optimization
may be restricted to AFLCs. A solution exists in this simplified optimization.38 It is then
clear that the set of optimal contracts is non-empty and always contains an AFLC.

Second, the argument in the final case above guarantees that the set of optimal contracts
includes only AFLCs if some but not all agents borrow at the optimum.

Proof of Lemma 3. Assume a menu of group contracts C exists that satisfies all
constraints, and such that the safest type C attracts to borrow is p̂. That is, C delivers
type p̂ a borrowing payoff of at least u, and satisfies limited liability and monotonicity of
each contract in C; homogeneous matching uniquely induced by C; incentive compatibility
guaranteeing that the contract intended for type p is preferred by a group of type p to all other
contracts in C; and lender ZPC given that each group is homogeneous and borrows under
its intended contract and that the set of borrowing types is [pr, p̂], for some p̂ ∈ [pr, ps].

39

Let (rp0, r
p
1, ..., r

p
np−1) be the contract in C intended for type p, and P = (rp̂0, r

p̂
1, ..., r

p̂
np̂−1).

Note that at least one interest rate rp̂k in P must be strictly less than Rs. This is because if all
interest rates in P equaled Rs, then by incentive compatibility all interest rates in every other
contract would equal Rs; but if every contract had a constant interest rate, homogeneous
matching would not be the unique outcome.

37Specifically, the logic applies after changing type from ps to p̂ when considering borrower payoffs.
38It is clear that the optimal AFLC is the one with the smallest interest rate r that satisfies all constraints,

since this leaves most surplus to the borrowers (and uniquely so if there are borrowers). It remains to show
that such a minimum r exists. To do so, let Z be the set of all r such that an AFLC involving r satisfies
all constraints. Clearly, Z is the subset of (0, Rs) such that an AFLC involving r satisfies the ZPC. First,
Z is non-empty. This is by the assumption that there exists a contract C satisfying all constraints, and the
main result above that in such a case, there is an AFLC satisfying all constraints and at least as good as
any C that satisfies all constraints. Second, Z has a minimum. This is because r < ρ could never satisfy
the ZPC, so Z is a subset of [ρ,Rs); and due to the continuity of the ZPC with respect to r and the ZPC’s
weak inequality. Together, these imply any downward limit point of Z is contained in Z.

39This is the set of borrowing types because every borrowing group of type p ≤ p̂ earns at least u per
member with the p̂-contract, by Lemma 1; and by incentive compatibility, they earn at least as much with
their own contract as with the p̂-contract.
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Now, incentive compatibility of C implies that

R−
np−1∑
k=0

pnp−k(1− p)k
(
np − 1

k

)
rpk ≥ R−

np̂−1∑
k=0

pnp̂−k(1− p)k
(
np̂ − 1

k

)
rp̂k , i.e.,

np̂−1∑
k=0

pnp̂−k(1− p)k
(
np̂ − 1

k

)
rp̂k ≥

np−1∑
k=0

pnp−k(1− p)k
(
np − 1

k

)
rpk , ∀p ∈ [pr, p̂] .

Thus∫ p̂

pr

[np̂−1∑
k=0

pnp̂−k(1− p)k
(
np̂ − 1

k

)
rp̂k

]
f(p)dp ≥

∫ p̂

pr

[
np−1∑
k=0

pnp−k(1− p)k
(
np − 1

k

)
rpk

]
f(p)dp ≥ ρ .

The second inequality here is exactly the ZPC satisfied by C, and the first follows from
incentive compatibility (the inequality above it). This guarantees that the ZPC satisfied by
C is satisfied if only the single contract P is offered.

We have thus shown that there exists a pooling contract (P ) that delivers the p̂-borrower
at least u, satisfies limited liability and monotonicity, has at least one interest rate strictly
less than Rs, and satisfies the ZPC given that each group is homogeneous and that the set
of borrowing types is [pr, p̂]. Further, logic of the Proof of Proposition 1 makes clear that
if so, there is an AFLC, call it P ′, that delivers the p̂-borrower at least u, satisfies limited
liability and monotonicity, involves r < Rs, and satisfies with equality the ZPC given that
each group is homogeneous and that the set of borrowing types is [pr, p̂]. This is because an
AFLC that satisfies the given ZPC at equality provides at least as high a p̂-payoff as any
pooling contract subject to limited liability, monotonicity, and the given ZPC; and r < Rs

in P ′, since otherwise P ′ would give the p̂-borrower a lower payoff than P .
The next step is to show that P ′ satisfies the remaining constraints and delivers outreach

of at least [pr, p̂]. Outreach of at least [pr, p̂] follows from Lemma 1 and the fact that P ′

delivers type p̂ at least u. P ′ also guarantees homogeneous matching, by Lemma 2, since it
involves r < Rs and r > 0 (otherwise it could not satisfy C’s ZPC). Finally, P ′ allows the
lender to break even, since it breaks even on borrowers of types in [pr, p̂], and therefore over
the set of actual borrowers, which is [pr, p̂

′] for some p̂′ ≥ p̂, by Lemma 1.
We have thus shown that if a menu of contracts achieves outreach [pr, p̂], there exists a

pooling AFLC that causes the lender to exactly break even over this set of borrowing types
and also achieves at least this outreach. It remains to show this AFLC can achieve as much
borrower surplus as the menu. This is guaranteed because all surplus from loans to types
[pr, p̂] goes to the borrowers in this AFLC, because the AFLC exactly breaks even over these
types.

Proof of Proposition 2. The Proof uses notation and the CLT Corollary from the
beginning of the Appendix.

Note that in an AFLC with group size n and interest rate r, lender profits assuming
all borrow (the left-hand side of ZPC 4) are continuous and strictly increasing in r; strictly
exceed ρ when r = Rs, given that G > ps/pr; and are strictly less than ρ when r = ρ, since
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r = ρ breaks even only if there is no default. This implies there exists an r ∈ (ρ, Rs) that
exactly satisfies ZPC 4; call it rn.

The borrowing payoff of an agent of type ps under AFLC with rn can be written

R− rnBn,n−k∗(n,rn)+1,ps −Rsps(1− Bn−1,n−k∗(n,rn),ps) . (11)

This is because when the number of failures in the group is less than k∗ (successes greater
than n− k∗), the group pays nrn and thus each borrower pays rn (in expectation); and that
iff the borrower succeeds and at least k∗ of the other n − 1 group members fail (less than
n − k∗ succeed), the borrower pays Rs. The ZPC for an AFLC with arbitrary r assuming
all agents borrow can be written analogously:

r ·Bn,n−k∗(n,r)+1,p +Rs · p(1−Bn−1,n−k∗(n,r),p) ≥ ρ . (12)

Let μ ≡ G/(ps/pr); by Assumption A3, μ > 1. We first show that limn→∞ rn = ρ. Suffi-
cient for this is that for any κ ∈ (1, μ) and n high enough, r = κρ satisfies ZPC 12 with strict
inequality. For, this implies limn→∞ rn < κρ for any κ ∈ (1, μ); and, rn > ρ. Fix κ ∈ (1, μ)
and let r = κρ. By inspection of ZPC 12, the claim is proved if limn→∞Bn,n−k∗(n,κρ)+1,p = 1.
Since Bn,n−k∗(n,κρ)+1,p ≥ Bn,n−k∗(n,κρ)+1,pr , also sufficient is limn→∞Bn,n−k∗(n,κρ)+1,pr = 1,
which is guaranteed by the CLT Corollary since κ < μ.

Given that limn→∞ rn = ρ, the CLT Corollary guarantees that limn→∞Bn,n−k∗(n,rn)+1,ps =
1. Since Bn−1,n−k∗(n,rn),ps ≥ Bn,n−k∗(n,rn)+1,ps, this implies that limn→∞Bn−1,n−k∗(n,rn),ps = 1.
Thus the entire payoff 11 approaches R− ρ. N > 1 implies that R− ρ > u. Thus, the safest
borrower, and hence all borrowers by Lemma 1, choose to borrow if n is large enough and
the lender offers an AFLC with rn. The lender exactly breaks even with rn, implying also
that borrower surplus is maximal.

Proof of Lemma 4. Under random matching, every borrower has the same expected
payment due when he succeeds, since the distribution over realized partners and their out-
comes is the same for all, and the contract faced and its complete affordability are also
the same for all. Call this expected payment upon success X . Then borrower i’s payoff to
borrowing is R− piX, only agents with pi ≤ p̂ ≡ (R− u)/X borrow, and the lender ZPC is
X ·E(p|p ≤ p̂) ≥ ρ. Limited liability implies X ≤ Rs. It is clear that an individual loan with
r = X results in the same expected payoffs for borrowers and satisfies the same constraints.
Thus, any borrower payoffs accomplishable by a permissible group contract resulting in X
can be accomplished by a permissible individual loan contract involving r = X .

Proof of Lemma 5. The proof uses notation defined in the beginning of the Appendix.
Fix n ≥ 2 and define ECm as the expected payment due from a group choosing m risky

projects and n − m safe projects, and Gm as a vector of n risk-types with m equaling pr
and n−m equaling ps. Then, as discussed in the Proof of Lemma 2, under an AFLC with
interest rate r,

ECm = nrBn,n−k∗+1,Gm +
n∑

j=k∗
(n− j)RsB̃n,n−j,Gm .
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The general group IC constraint can be written

nRs − EC0 ≥ (n−m)Rs +mRr − ECm , i.e. , N ≥ 1

ρ

EC0 − ECm

m
,

for m ∈ {1, 2, ..., n}. The first inequality guarantees the group payoff for all safe projects
exceeds the group payoff for m risky projects and the rest safe; the second rearranges the
first. If the right-hand side of the second inequality is increasing in m, then IC constraint 6
(m = n) implies all the others. Sufficient for this is that, for m ∈ {1, 2, ..., n− 1},

EC0 − ECm+1

m+ 1
>

EC0 − ECm

m
, i.e. , (m+ 1)ECm > EC0 +mECm+1 .

We argue in two steps that the second inequality is true. First, note that the function
EC(p1, p2, ..., pn) defined over n risk-types in (0, 1), i.e. with domain (0, 1)n, is strictly
submodular. This follows from the Proof of Lemma 2, where we showed that nR − ECG is
strictly supermodular under an AFLC with r ∈ (0, Rs), G being a vector of n risk-types in
(0, 1); this implies EC is strictly submodular. Second, we argue that strict submodularity
of EC implies the inequality. To see this, note that for any integers m and m′, with m ∈
{1, 2, ..., n− 1} and m′ ∈ {1, 2, ..., m},

ECm′ + ECm = EC(pr, ..., pr︸ ︷︷ ︸
m′−1

, ps, ..., ps︸ ︷︷ ︸
n−m′

, pr) + EC(pr, ..., pr︸ ︷︷ ︸
m

, ps, ..., ps︸ ︷︷ ︸
n−m

)

> EC(pr, ..., pr︸ ︷︷ ︸
m′−1

, ps, ..., ps︸ ︷︷ ︸
n−m′+1

) + EC(pr, ..., pr︸ ︷︷ ︸
m

, ps, ..., ps︸ ︷︷ ︸
n−m−1

, pr) = ECm+1 + ECm′−1 ,

where the equalities come from symmetry of EC (i.e. invariance to permutation of argu-
ments) and the inequality from strict submodularity of EC. Applying this fact m times to
(m+ 1)ECm gives the desired inequality.40

Proof of Proposition 3. The Proof uses notation and the CLT Corollary from the
beginning of the Appendix.

By an argument analogous to the one from the Proof of Proposition 2, we can define rn
as the interest rate in an AFLC with group size n that causes the lender to exactly break
even, assuming the group chooses all safe projects. As in that Proof, we know rn ∈ (ρ, Rs),
and by an analogous argument to the one in that Proof, limn→∞ rn = ρ.

If the lender offers an AFLC with rn, it exactly breaks even; hence, borrowers in groups
all choosing safe projects earn first-best payoffs Rs−ρ, greater than u by assumption. Thus

40Note that

(m+ 1)ECm =(m− 1)ECm + ECm + ECm >(m− 1)ECm + ECm−1 + ECm+1

=(m− 2)ECm + ECm−1 + ECm + ECm+1 >(m− 2)ECm + ECm−2 + 2ECm+1

= . . . > . . . = (1) ECm + EC2 + ECm + (m− 2)ECm+1 > (1) ECm + EC1 + (m− 1)ECm+1

=EC1 + ECm + (m− 1)ECm+1 >EC0 +mECm+1 .
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borrowers prefer all safe projects to the outside option. By Lemma 5, it remains to show
they prefer all safe projects to all risky projects if the lender offers an AFLC with rn; i.e.,
writing payoffs as described in the Proof of Proposition 2, to show that

Rs − rnBn,n−k∗(n,rn)+1,ps −Rsps(1− Bn−1,n−k∗(n,rn),ps) ≥
Rr − rnBn,n−k∗(n,rn)+1,pr − Rspr(1−Bn−1,n−k∗(n,rn),pr) ,

i.e.,

N ≥ {rn[Bn,n−k∗(n,rn)+1,ps −Bn,n−k∗(n,rn)+1,pr ] +

Rs[ps(1−Bn−1,n−k∗(n,rn),ps)− pr(1−Bn−1,n−k∗(n,rn),pr)]} / ρ

Since N > 0 and limn→∞ rn = ρ, this holds for n large enough if limn→∞Bn,n−k∗(n,rn)+1,pr = 1
and limn→∞Bn−1,n−k∗(n,rn),ps = 1. The CLT Corollary guarantees the first of these limits,
which in turn guarantees the second limit, since Bn−1,n−k∗(n,rn),ps ≥ Bn−1,n−k∗(n,rn),pr and
Bn−1,n−k∗(n,rn),pr ≥ Bn,n−k∗(n,rn)+1,pr .

Proof of Propositions 4 and 5. The Proof uses notation defined in the beginning of
the Appendix, and the CLT Fact stated there.

We first prove Claim A of Proposition 5. Fix ε ∈ (0, 1) and L
′ ∈ (L, 1] such that

L
′
(1− γp/ρ) < L, and define

κ ≡ min

{
(K/L

′
+ γ)p/ρ− 1

2
,
R/ρ− 1

2
,
ε(1− p)

2p

}
.

In part because R > ρ (implied by BSW’s assumptions), one can verify that κ > 0. Consider
full liability size-n group contracts with interest rate r = (1+ κ)ρ, where a borrower of loan

size L is sanctioned KL/L
′
if the entire group obligation (nrL) is not repaid. We wish to

show that for n high enough, this contract satisfies lender break-even (respecting incentive

compatibility and limited liability) for all loan sizes L ∈ (0, L
′
], and provides borrowers of

all wealth levels w ∈ [1− L
′
, 1) with payoffs of at least R− ρ− ερ(1 − w)(1− p)/p.

First note that the sanction KL/L
′
is feasible for all L ∈ (0, L

′
]. Define

j∗(n) ≡ max

{ ⌈
pn(1 + κ)

(K/L
′
+ γ)p/ρ

⌉
,

⌈
pn(1 + κ)

R/ρ

⌉ }
.

Sufficient for full group repayment of nrL to be feasible and incentive compatible for any
loan size L ∈ (0, L

′
] if the number of group successes is at least j∗(n) is

nrL

j∗(n)
≤ KL/L

′
+ γ and

nrL

j∗(n)
≤ R .

Plugging in for r and j∗(n), it is straightforward to show these hold for any L ∈ (0, 1]. Thus

the repayment rate for all loan sizes L ∈ (0, L
′
] is at least Bn,j∗(n),p.
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Note that CLT Fact (10) guarantees limn→∞Bn,j∗(n),p = 1, since

p > lim
n→∞

j∗(n)
n

= max

{
p(1 + κ)

(K/L
′
+ γ)p/ρ

,
p(1 + κ)

R/ρ

}
.

Thus there exists an n such that n ≥ n implies

Bn,j∗(n),p ≥ max

{
1

1 + κ
, 1− ε(1− p)

2p

ρL
′

K

}
.

The lender breaks even for L ∈ (0, L
′
] if n ≥ n, since for r = (1 + κ)ρ,

Bn,j∗(n),p ≥ 1

1 + κ
=⇒ Bn,j∗(n),p · rL ≥ ρL .

Finally we show that for n ≥ n, borrower payoffs for all wealth levels w ∈ [1−L
′
, 1) and

loan size L = 1−w are at least R− ρ− ρ(1−w)ε(1− p)/p. Let n ≥ n. For some repayment
rate q(n, w), a borrower of wealth w earns

R− ρw − q(n, w)rL− [1− q(n, w)]
KL

L
′ = R− ρ− ρ(1− w)[κ+ (1− q(n, w))(

K

ρL
′ − 1− κ)]

≥ R − ρ− ρ(1 − w)[κ+ (1− q(n, w))
K

ρL
′ ] ≥ R− ρ− ρ(1− w)[κ+ (1−Bn,j∗(n),p)

K

ρL
′ ] ,

where the equality comes from plugging in for r and L and rearranging, and the second
inequality is because q(n, w) ≥ Bn,j∗(n),p for all w ∈ [1−L

′
, 1). The claim is established since

(1−Bn,j∗(n),p)
K

ρL
′ ≤

ε(1− p)

2p
, so κ+ (1−Bn,j∗(n),p)

K

ρL
′ ≤

ε(1− p)

p
.

Proposition 4 is proved identically, except that L
′
is fixed in the interval (0, L) and γ is

set to zero in all expressions. Claim B of Proposition 5 is also proved identically after fixing
L
′
= 1.

Proof of Proposition 6. Assumption G > ps/p guarantees that ZPC 8 is satisfied by an
AFLC with n = 2 and r0 < Rs; thus there exists an (unique) AFLC with n = 2 that satisfies
ZPC 8 with equality, and r0 < r1 in this AFLC. Consider this AFLC, define δ ≡ r1−r0 (> 0)
and ˜̃ps ≡ π2ps + (1 − π2)p, and let π denote π(2)(> 0). It is straightforward to verify that
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homogeneous matching obtains.41 ZPC 8 at equality becomes

p̃2r0 + p̃(1− p̃)(r0 + δ) = ρ , i.e., r0 =
ρ− p̃(1− p̃)δ

p
.

Using payoff expression 7, the condition for including the safest (“safe”) borrowers, and thus
achieving perfect outreach, is

R − ps ˜̃psr0 − ps(1− ˜̃ps)(r0 + δ) ≥ u , i.e.,

N ≥ ps[r0 + (1− ˜̃ps)δ]

ρ
=

ps
p
[1− (δ/ρ)π2p(ps − p)] ≡ Ñ ,

where the last equality substitutes in for r0 from the ZPC and rearranges. Thus full efficiency
is attained by group lending with groups of size 2 for N ≥ Ñ. By inspection, Ñ < ps/p

For general n, including safe borrowers requires the following necessary condition, using
expression 7:

R − ps

n−1∑
k=0

[1− π(n)] p̃n−k−1(1− p̃)k
(
n− 1

k

)
rk ≥ u .

Note from ZPC 8 that

n−1∑
k=0

[1−π(n)]p̃n−k−1(1− p̃)k
(
n− 1

k

)
rk ≥

ρ− π(n)
∑n−1

k=0 pp̃
n−k−1(1− p̃)k

(
n−1
k

)
rk

p
≡ ρ−Qn

p
,

say. So, necessary for fully efficient lending is

R − ps
ρ−Qn

p
≥ u , i.e., N ≥ ps

p

(
1− Qn

ρ

)
.

Now limn→∞Qn = 0, because Qn ≥ 0, limn→∞ π(n) = 0, and

Qn ≡ π(n)

n−1∑
k=0

pp̃n−k−1(1− p̃)k
(
n− 1

k

)
rk ≤ π(n)Rs

n−1∑
k=0

p̃n−k−1(1− p̃)k
(
n− 1

k

)
= π(n)Rs ,

the inequality in part because rk ≤ Rs. Applying this to the condition for efficient lending
establishes that for any N < ps/p, fully efficient lending is not achieved if n is high enough.

In sum, since Ñ < ps/p, there exists an n > 2 such that for n ≥ n, fully efficient lending

is not achieved if N < (Ñ + ps/p)/2; fully efficient lending is not achieved by individual
lending if N < ps/p (as shown in section 5); but fully efficient lending is achieved by group

lending with n = 2 if N ≥ Ñ. Since Ñ < (Ñ + ps/p)/2 < ps/p, this establishes the result.

41The expected group payoff function for a group of (pre-replacement) types pi and pj is

2R− pi ˜̃pjr0 − pi(1− ˜̃pj)r1 − pj ˜̃pir0 − pj(1− ˜̃pi)r1

and the cross-partial with respect to pi and pj is 2δπ2 > 0.
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Figure 1: When is Full Efficiency Achievable, as a Function of Group Size
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Note: For three values of gross excess return G, this graphs against group size n the cutoff
value for net excess return N, above which fully efficient lending and complete outreach
are attainable. Risk types are distributed uniformly over [0.5, 0.99], and lender required
return is ρ = 1.1. The left panel is the baseline model. The right panel is the information
deterioration model of Section 7.1 with π(n) = e0.02(1−n).
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Figure 2: Outreach (Efficiency) as a Function of Group Size
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Note: For three values of gross excess return G, this graphs against group size n the maxi-
mum outreach (efficiency) achievable at N = 1.1. Risk types are distributed uniformly over
[0.5, 0.99], and lender required return is ρ = 1.1. The left panel is the baseline model. The
right panel is the information deterioration model of Section 7.1 with π(n) = e0.02(1−n).
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