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1 Introduction

This paper studies the mechanics of cartel enforcement and its interaction with bidding

constraints in the context of repeated procurement auctions. Minimum prices, which place

a lower bound on the price at which procurement contracts can be awarded, are frequently

used in public procurement. Because minimum prices make price wars less effective, they can

also make cartel enforcement more difficult. This leads to the counter-intuitive prediction

that the introduction of minimum prices may lead to a first-order stochastic dominance

drop in the right tail of winning bids. Because this prediction does not arise in competitive

environments, it provides a joint test of collusion and of the specific channel we outline:

enforcement constraints are binding, and they can be affected by institution design. The

model’s predictions are borne out in procurement data from Japan, showing that this cartel

enforcement channel is empirically relevant.

We model firms as repeatedly playing a first-price procurement auction with i.i.d. pro-

duction costs. We assume that costs are commonly observed among cartel members, and

that firms are able to make transfers. In this environment, cartel behavior is limited by

self-enforcement constraints: firms must be willing to follow bidding recommendations, as

well as make equilibrium transfers. We provide an explicit characterization of optimal car-

tel behavior: first, contract allocation is efficient, provided that price constraints are not

binding; second, cartel members implement the highest possible winning bid for which the

sum of deviation temptations is less than the cartel’s total pledgeable surplus. This sim-

ple characterization lets us delineate distinctive predictions of the model in a transparent

manner.

Our main predictions relate the introduction of minimum prices and changes in the dis-

tribution of winning bids. In our repeated game environment, minimum prices may weaken

cartel discipline by limiting the impact of price wars. When this is the case, sustaining col-

lusive bids above the minimum price becomes more difficult, causing a first-order stochastic
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dominance drop in the distribution of winning bids to the right of the minimum price. A

key observation is that minimum prices have the opposite impact in environments without

collusion. Under competition, regardless of whether firms have complete or asymmetric in-

formation about costs, minimum prices lead to a (weak) first-order stochastic dominance

increase in the right tail of winning bids. This provides a joint test of collusion and of the

mechanics of cartel enforcement. We extend these predictions to the case of entry and show

that under collusion, minimum prices have different effects on entrants and cartel bidders.

We explore the impact of enforcement constraints on cartel behavior by using data from

public procurement auctions taking place in Japanese cities of the Ibaraki prefecture between

2007 and 2015. The introduction of minimum prices in one city in 2009 lets us use the change-

in-changes framework of Athey and Imbens (2006) to recover the counterfactual distribution

of winning bids after the policy change. The data exhibits a large and significant drop in

the distribution of winning bids to the right of the minimum price, implying that: (i) there

is collusion; (ii) enforcement constraints limit the scope of collusion; (iii) minimum prices

successfully weaken cartel discipline.

Richer data available from the treatment city lets us break down more finely the channels

through which the distribution of winning bids is affected by minimum prices. Using a

single difference approach, we show that the effect of minimum prices is equally mediated by

weakened entry deterrence, and weakened enforcement among cartel members. Motivated

by the fact that 25% of bidders make up 80% of the (auction, bidder) pairs, we identify

the top quartile of most active bidders as cartel members. Consistent with our theory, the

effect of minimum prices is entirely concentrated on cartel members. In addition, the effect

of minimum prices is disproportionately concentrated on auctions with a high reserve price,

suggesting that enforcement constraints are more binding for large auctions.

Our paper lies at the intersection of different strands of the literature on collusion in

auctions. The seminal work of Graham and Marshall (1987) and McAfee and McMillan

(1992) studies static collusion in environments where bidders are able to contract. A key
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take-away from their analysis is that the optimal response from the auctioneer should involve

setting more constraining reserve prices. In a procurement setting this means reducing the

maximum price that the auctioneer is willing to pay. We argue, theoretically and empirically,

that when bidders cannot contract and must enforce collusion through repeated game play,

minimum price guarantees can weaken cartel enforcement.

An important observation from McAfee and McMillan (1992) is that in the absence of cash

transfers, the cartel’s ability to collude is severly limited even when commitment is available.

A recent strand of work takes seriously the idea that in repeated games, continuation values

may successfully replace transfers. Aoyagi (2003) studies bid rotation schemes and allows

for communication. Skrzypacz and Hopenhayn (2004) (see also Blume and Heidhues, 2008)

study collusion in environments without communication and show that while cartel members

may still be able to collude, they will remain bounded away from efficient collusion. Athey

et al. (2004) study collusion in a model of repeated Bertrand competition and emphasize that

information revelation costs will push cartel members towards rigid pricing schemes. Because

we focus on obedience rather than information revelation constraints, our model simplifies

away the strategic issues emphasized in this body of work: we assume complete information

among cartel members and transferable utility.1 This yields a simple characterization of

optimal collusion closely related to that obtained in the relational contracting literature

(Bull, 1987, Baker et al., 1994, 2002, Levin, 2003), and provides a transparent framework in

which to study the effect of price constraints on winning bids.

Several recent papers study the impact of the auction format on collusion. Fabra (2003)

compares the scope for tacit collusion in uniform and discriminatory auctions. Marshall and

Marx (2007) study the role of bidder registration and information revelation procedures in

facilitating collusion. Pavlov (2008) and Che and Kim (2009) consider settings in which

cartel members can commit to mechanisms and argue that appropriate auction design can

1Note that we allow for incomplete information when we study the impact of minimum prices under
competition. This ensures that our test of collusion is not driven by stark modeling assumptions.
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successfully limit collusion provided participants have deep pockets and can make ex ante

payments. Abdulkadiroglu and Chung (2003) make a similar point when bidders are patient.

More closely related to our work, Lee and Sabourian (2011) as well as Mezzetti and Re-

nou (2012) study full implementation in repeated environments using dynamic mechanisms.

They show that implementation in all equilibria can be achieved by restricting the set of

continuation values available to players to support repeated game strategies. The incomplete

contract literature (see for instance Bernheim and Whinston, 1998, Baker et al., 2002) has

suggested that the same mechanism, used in the opposite direction, provides foundations

for optimally incomplete contracts. Specifically, it may be optimal to keep contracts more

incomplete than needed, in order to maintain the range of continuation equilibria needed to

enforce efficient behavior. We provide empirical evidence that this theoretical mechanism

plays a significant role in practice, and can be meaningfully used to affect collusion between

firms.

On the empirical side, an important set of papers develops empirical methods to detect

collusion (see Harrington (2008) for a detailed survey of prominent empirical strategies and

their theoretical underpinnings). Porter and Zona (1993, 1999) contrast the behavior of sus-

pected cartel members with that of non-cartel members, controlling for observables. Bajari

and Ye (2003) use excess correlation in bids as a marker of collusion. Porter (1983), along

with Ellison (1994) (see also Ishii, 2008) use patterns of price wars of the sort predicted by re-

peated game models of oligopoly behavior (Green and Porter, 1984, Rotemberg and Saloner,

1986) to identify collusion. In a multi-stage auction context, Kawai and Nakabayashi (2014)

argue that excess switching of second and third bidder across bidding rounds, compared

to first and second bidders, is a smoking gun for collusion. We propose a test of collusion

exploiting changes in the cartel’s ability to implement effective punishments.

The paper is structured as follows. Section 2 sets up our benchmark model of cartels

and characterizes optimal cartel behavior. Section 3 derives empirical predictions from this

model that distinguish it from competitive behavior. Section 4 briefly extends these results
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in a setting with entry. Section 5 takes the model to data. Section 6 discusses the robustness

of our findings, as well as policy-design issues. Appendix A presents robustness checks for

our empirical analysis. Proofs are collected in Appendix B unless mentioned otherwise.

2 Self-Enforcing Cartels

Modeling strategy. McAfee and McMillan (1992)’s classic model of cartel behavior fo-

cuses on the constraints imposed by information revelation among asymmetrically informed

cartel members. Instead, we are interested in the enforcement of cartel recommendations

through repeated play. Viewed from the mechanism design perspective of Myerson (1986),

McAfee and McMillan (1992) focus on truthful revelation, while we focus on obedience.

The implications of the two frictions turn out to be different: interpreted in a procurement

context, McAfee and McMillan (1992) show that collusion makes lower maximum prices

desirable; we argue that higher minimum prices may help weaken cartels.

This different emphasis is reflected in our modeling choices. We have three main goals:

(i) we want to provide transparent intuition on how bidding constraints, here mini-

mum prices, affect cartel behavior and the distribution of bids;

(ii) we want to convincingly assess whether enforcement constraints are a significant

determinant of cartel behavior;

(iii) we want to exploit this understanding of cartel behavior to derive a test of col-

lusion.

Given those goals, we use a tractable complete information model of collusion when

fleshing out implications of ourH1 hypothesis (“there is collusion and enforcement constraints

are binding”). To ensure that our test is not dependent on this simplification, we allow

for more general informational environments when we characterize behavior under our H0

hypothesis (“there is no collusion”). This results in a transparent but powerful test.
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2.1 The model

Players and payoffs. Each period t ∈ N, a buyer procures a single unit of a good through

a first-price auction described below. A set N = {1, ..., n} of long-lived firms is present in

the market. In each period t, a subset N̂t ⊂ N of firms is able to participate in the auction.

Participant set N̂t is exogenous, i.i.d. over time, and cartel members are exchangeable. In

other terms, for all subsets J ⊂ N of cartel members, and all permutations α : N → N of

cartel member identities, we have that

prob(N̂t = J) = prob(N̂t = α(J)).

We think of this set of participating firms as those potentially able to produce in the

current period. Throughout the paper, participation is exogenously determined before pro-

duction costs become known.2 In period t, each participating firm i ∈ N̂t can deliver the

good at a cost ci,t. Cost ci,t is drawn i.i.d. across participants and time periods from a c.d.f.

F with support [c, c] and density f .

Firms are able to send transfers to each other, regardless of whether or not they par-

ticipate in the auction. We denote by Ti,t the net transfer received or sent by firm i. Let

xi,t ∈ {0, 1} denote whether firm i wins the procurement contract in period t. Let bi,t denote

her bid. We assume that firms have quasi-linear preferences, so that firm i’s overall stage

game payoff is

πi,t = xi,t(bi,t − ci,t) + Ti,t.

Firms value future payoffs using a common discount factor δ < 1.

The stage game. The procurement contract is allocated according to a first price auction

with constrained bids. Specifically, each participant must submit a bid bi in the range [p, r]

where r is a maximum (or reserve) price, and p is a minimum price. Bids outside of this

2We consider the endogenous participation of entrants in Section 4.
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range are discarded. The winner is the lowest bidder. The winner then delivers the good at

the price she bid. For simplicity, we assume that r ≥ c.3

To keep the model tractable and to focus on how enforcement constraints affect bidding

behavior, we assume that all firms belong to the cartel, and firms in the cartel observe

one another’s production costs. In addition, we assume that payoffs are transferable.4 The

timing of information and decisions within period t is as follows.

1. The set of participating firms N̂t is drawn and observed by all cartel members.

2. The production costs ct = (ci,t)i∈N̂t
of participating firms are publicly observed by

cartel members.

3. Participating firms i ∈ N̂t submit public bids bt = (bi,t)i∈N̂t
. This yields allocation

xt = (xi,t)i∈N̂t
∈ [0, 1]N̂t such that: if bj,t > bi,t for all j ∈ N̂t\{i} then xi,t = 1; if there

exists j ∈ N̂t\{i} with bj,t < bi,t then xi,t = 0.

In the case of ties, we follow Athey and Bagwell (2001) and let the bidders jointly de-

termine the allocation. Specifically, bidders simultaneously pick numbers γt = (γi,t)i∈N̂t

with γi,t ∈ [0, 1] for all i, t. When lowest bids are tied, the allocation to a lowest bidder

i is

xi,t =
γi,t∑

{j∈N̂ s.t. bj,t=mink bk,t} γj,t
.

4. Firms make transfers Ti,t.

Positive transfers are always accepted and only negative transfers will be subject to an

incentive compatibility condition. We require exact budget balance within each period

at the overall cartel level, i.e.
∑

i∈N Ti = 0.

Our model is intended to capture commonly observed features of public construction

procurement. Governments need to procure construction services on an ongoing basis. They

face a limited and stable set of firms that can potentially perform the work, a subset of

3This assumption is largely verfied in our data since 99.7% of auctions have a winner.
4The assumption that firms can transfer money is not unrealistic. Indeed, many known cartels used

monetary transfers; see for instance Pesendorfer (2000), Asker (2010) and Harrington and Skrzypacz (2011).
In practice these transfers can be made in ways that make it difficult for authorities to detect them, like
sub-contracting between cartel members or, in the case of cartels for intermediate goods, between-firms sales.
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which participates regularly. Legislation frequently requires participants to register, and

governments make bids and outcomes public after each auction is completed. The repeated

and public nature of the interaction makes collusion a realistic concern.

Note that procurement auctions with minimum acceptable bids are frequently used in

practice. For instance, auctions with minimum bids are used for procurement of public

works in several countries in the European Union and by local governments in Japan. The

common rationale for introducing minimum bids in the auction is to limit defaults and costly

renegotiations from firms that win with very low bids.

The repeated game. Interaction is repeated and firms can use the promise of continued

collusion to enforce obedient bidding and transfers. Formally, bids and transfers need to be

part of a subgame perfect equilibrium of the repeated games among firms.

The history among cartel members at the beginning of time t is

ht = {cs,bs,xs,Ts}t−1
s=0.

Let Ht denote the set of period t public histories and H =
⋃
t≥0Ht denote the set of all

histories. Our solution concept is subgame perfect equilibrium (SPE), with strategies

σi : ht 7→ (bi,t(ct), γi,t(ct), Ti,t(ct,bt,xt))

such that bids (bi,t(ct), γi,t(ct)) and transfers Ti,t(ct,bt,xt) can depend on all public data

available at the time of decision-making.

We say that a strategy σi is non-collusive whenever bids at history ht depend only on the

costs of participating bidders at history ht, but not their identities: σi(ht) = σi

(
ci,t, {cj,t}j∈N̂t\i

)
.

Since there is no persistent state in this game, non-collusive strategies coincide with Markov

perfect strategies.
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Definition 1 (collusive and competitive environments). We say that we are in a collusive

environment if firms play a Pareto efficient SPE.

We say that we are in a competitive environment if firms play a subgame perfect equilib-

rium in non-collusive strategies that is Pareto efficient among non-collusive equilibria.

Under complete information, the unique competitive equilibrium outcome is such that

the winning bid is equal to the second lowest cost. The contract is allocated to the bidder

with the lowest cost.

2.2 Optimal collusion

Denote by Σ the set of SPE in the repeated stage game. Let

V (σ, ht) = Eσ

∑
s≥0

δs
∑
i∈N̂t+s

xi,t+s(bi,t+s − ci,t+s)

∣∣∣∣∣∣ht


denote the total surplus generated under equilibrium σ conditional on history ht. We denote

by

V p ≡ max
σ∈Σ

V (σ, h0)

the highest equilibrium surplus sustainable in equilibrium.5 We emphasize that this highest

equilibrium value depends on minimum price p.

Given a history ht and a strategy profile σ, we denote by β(ct|ht, σ) the bidding profile

induced by strategy profile σ at history ht as a function of realized costs ct.

Lemma 1 (stationarity). Consider a subgame perfect equilibrium σ that attains V p. Equi-

librium σ delivers surplus V (σ, ht) = V p after all on-path histories ht.

There exists a fixed bidding profile β∗ such that, in a Pareto efficient equilibrium, firms

bid β(ct|ht, σ) = β∗(ct) after all on-path histories ht.

5The existence of surplus maximizing and surplus minimizing equilibria follows from Proposition 2.5.2
in Mailath and Samuelson (2006).
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For any i ∈ N , let

Vi(σ, ht) = Eσ

[∑
s≥0

δs(xi,t+s(bi,t+s − ci,t+s) + Ti,t+s)

∣∣∣∣∣ht
]

denote the expected discounted payoff that firm i gets in equilibrium σ conditional on history

ht. Let

V p ≡ min
σ∈Σ

Vi(σ, h0)

denote the lowest possible equilibrium payoff for a given firm.

Given a bidding profile (β, γ), let us denote by βW (c) and x(c) the induced winning bid

and allocation profile for realized costs c. For each firm i, we define

ρi(β
W , γ,x)(c) ≡ 1βW (c)>p +

1βW (c)=p

1 +
∑

j∈N̂\{i}:xj(c)>0 γj(c)
.

Term ρi(β
W , γ,x)(c) corresponds to a deviator’s highest possible chance of winning the

contract by attempting to undercut the equilibrium winning bid.

Lemma 2 (enforceable bidding). A winning bid profile βW (c) and an allocation x(c) are

sustainable in SPE if and only if for all c,

∑
i∈N̂

(ρi(β
W , γ,x)(c)− xi(c))

[
βW (c)− ci

]+
+ xi(c)

[
βW (c)− ci

]− ≤ δ(V p − nV p). (1)

As in Levin (2003), a bidding profile can be implemented in SPE if and only if the

sum of deviation temptations (both from bidders abstaining to bid above their cost, and

bidders having to bid below their cost) is less than or equal to the total pledgeable surplus

δ(V p − nV p), i.e. the difference between the highest possible continuation surplus, and the

sum of minimal continuation surpluses guaranteed to each player in equilibrium.

For each cost realization c, let x∗(c) denote the efficient allocation. It allocates the pro-

curement contract to the participating firm with the lowest cost (ties are broken randomly).
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We define

b∗p(c) ≡ sup

b ≤ r :
∑
i∈N̂

(1− x∗i (c)) [b− ci]+ ≤ δ(V p − nV p)

 .

For values of c such that b∗p(c) > p, this value is the highest enforceable winning bid when

the cartel allocates the good efficiently. Note that b∗p(c) is always weakly greater than the

second lowest cost.

Proposition 1. On the equilibrium path, any efficient equilibrium bidding strategy sets win-

ning bid β∗p(c) = max{b∗p(c), p} in every period. Moreover, the allocation is conditionally

efficient: whenever β∗p(c) > p, the contract is allocated to the bidder with the lowest procure-

ment cost.

This result follows from obedience constraint (1). Bid β∗p(c) is the highest enforceable

bid. Furthermore, allocating the good efficiently increases the surplus accruing to the cartel

while also relaxing (1). Indeed, the lowest cost bidder has the largest incentives to undercut

other bidders.

The firm’s behavior in a competitive environment with complete information is an im-

mediate corollary: it coincides with collusive behavor in a game with discount factor δ = 0.

For any profile of cost realizations c, let c(2) denote the second lowest cost.

Corollary 1 (behavior under competition). In a competitive environment, the winning bid

is βcomp
p (c) = max{p, c(2)}.

We now clarify how minimum prices affect the set of payoffs that firms can sustain in

SPE. We denote by β∗0(c) the lowest equilibrium bid in auctions with no minimum price. If

we are in a collusive environment, β∗0(c) is observable from data: it is the lowest equilibrium

winning bid.

Lemma 3 (worst case punishment). (i) V 0 = 0, and V p > 0 whenever p > c;

(ii) there exists η > 0 such that for all p ∈ [β∗0(c), β∗0(c) + η], V p − nV p < V 0 − nV 0.
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Lemma 3(i) shows that with no minimum price, the cartel can force a firm’s payoff down

to a minmax value of 0, but that minmax values are bounded away from zero when the

minimum price is within the support of procurement costs. Lemma 3(ii) establishes that

the pledgeable surplus V p − nV p that the cartel can use to provide incentives decreases

after introducing a minimum price. The reason for this is that a minimum price p in the

neighborhood of β∗0(c) increases the lowest equilibrium value V p by an amount bounded away

from 0, even for η > 0 small. This tightens enforcement constraint (1) and reduces the bids

that the cartel can sustain in equilibrium.

3 Empirical implications

The effect of minimum prices on the distribution of bids. We now delineate several

empirical implications of our model. Specifically, we contrast the effect that a minimum

price has on the distribution of winning bids under competition and under collusion.

Proposition 2 (the effect of minimum prices on bids). Under collusion, minimum prices

can induce a first-order stochastic dominance drop in the right tail of winning bids. The

opposite holds under competition. Formally:

(i) there exists η > 0 such that, for all p ∈ [β∗0(c), β∗0(c) + η] and all q > p,

prob(β∗p ≥ q|β∗p ≥ p) ≤ prob(β∗0 ≥ q|β∗0 ≥ p),

the inequality being strict for some q > p whenever prob(β∗0 < r) > 0.

(ii) for all p > 0 and all q > p,

prob(βcomp
p ≥ q|βcomp

p > p) = prob(βcomp
0 ≥ q|βcomp

0 > p).6
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Proposition 2 provides a joint test of collusion and of the fact that cartel enforcement

constraints are binding. Consider the introduction of a minimum price close to the minimum

observed winning bid. Under collusion, the introduction of minimum prices will lead to a

first-order stochastic dominance drop in the distribution of winning bids to the right of the

minimum price. Under competition, the introduction of minimum prices will lead to a (weak)

first order stochastic dominance increase in the distribution of winning bids.

Proposition 2(ii) makes a clear prediction that allows us to test the H0 hypothesis that

there is competition. Proposition 2(i) clarifies likely comparative statics under the H1 hy-

pothesis that there is collusion. This increases the power of our test, and in principle, would

allow us report p-values from one-sided tests. However, the data is sufficiently clear that we

lose no significance from reporting p-values from two-sided tests, and do so in our empirical

analysis.

We strengthen this test by showing that Proposition 2(ii) extends to asymmetric infor-

mation settings.

Competitive comparative statics under asymmetric information. We assume now

that firms are privately informed about their own procurement cost. Let bAI0 : [c, c] → R+

denote the equilibrium bidding function in the unique symmetric equilibrium of the first-price

procurement auction with reserve price r and no minimum price.

Proposition 3. Under private information, a first-price auction with reserve price r and

minimum price p < min{r, c} has a unique symmetric equilibrium with bidding function bAIp .

If bAI0 (c) ≥ p, then bAIp (c) = bAI0 (c) for all c ∈ [c, c];

6Conditioning on a strict inequality is meaningful because the distribution of winning bids may have
mass points at the minimum price, which we need to correctly take care of. When the mass of bids at the
minimum price is small, the conditioning events in Propostion 2 (i) and (ii) coincide. In our data 1.2% of
auctions with a minimum price have a winning bid equal to the minimum price.
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If bAI0 (c) < p, there exists a cutoff ĉ ∈ (c, c) with bAI0 (ĉ) > p such that

bAIp (c) =

 bAI0 (c) if c ≥ ĉ,

p if c < ĉ.

An immediate corollary of Propostion 3 is that minimum prices can only yield a first order

stochastic dominance increase in the right tail of winning bids. Let βAIp (c) ≡ mini b
AI
p (ci)

denote winning bids.

Corollary 2. For all p > 0 and all q > p,

prob(βAIp ≥ q | βAIp > p) ≥ prob(βAI0 ≥ q | βAI0 > p).

This strengthens the test of collusion provided in Proposition 2. A first-order stochastic

dominance drop in the right tail of winning bids cannot be explained away by a competitive

model with incomplete information.

4 Entry

We briefly extend the model of Section 2 to allow for entry. The goal of this extension is

twofold. First, we want to show that the testable predictions in Proposition 2 continue to

hold when non-cartel members can participate. Second, this extension allows us to derive

additional predictions on the differential effect of minimum prices on cartel members and

entrants.

We assume that in each period t, a short-lived firm may bid in the auction along with

participating cartel members N̂t. To participate, the short-lived firm has to pay an entry

cost kt drawn i.i.d. over time from a distribution Fk with support [0, k]. The distribution of

entry costs may have a point mass at 0. We let Et ∈ {0, 1} denote the entry decision of the

short-lived firm in period t, with Et = 1 denoting entry.
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Upon paying the entry cost, the short-lived firm learns its cost ce,t for delivering the good,

which is drawn i.i.d. from a c.d.f. Fe with support [c, c] and density fe. We assume that

the short-lived firm’s entry decision and her procurement cost upon entry ce,t are publicly

observed.

The timing of information and decisions within each period t is as follows:

1. The short-lived firm’s entry cost kt is drawn and privately observed. The short-lived

firm makes entry decision Et, which is observed by cartel members.

2. The set of participating cartel members N̂t is drawn and observed by both cartel

members and the short-lived firm.

3. The production costs ct of participating firms are drawn and publicly observed by all

firms.

4. Participating firms submit public bids bt = (bi,t) and numbers γ = (γi,t) with γi,t ∈
[0, 1], resulting in allocation xt = (xi,t).

7

5. Cartel members make transfers Ti,t to one another.

The public history at the beginning of time t is now ht = {Es, cs,bs,xs,Ts}t−1
s=0, and is

observed by both cartel members and entrants. Let Ht denote the set of period t public

histories and H =
⋃
t≥0Ht denote the set of all histories. Our solution concept is subgame

perfect public equilibrium, with strategies

σi : ht 7→ (bi,t(Et, ct), γi,t(Et, ct), Ti,t(Et, ct,bt,xt))

for cartel members and strategies

σe : ht 7→ (Et(kt), be,t(kt, ct), γe,t(kt, ct))

for the short-lived firms.

7The allocation is determined in the same way as in Section 2.
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The analysis of this model is essentially identical to that of the model of Section 2

except that now the cartel will deter entry in addition to enforcing collusive bidding. Given

that procurement costs are observed after entry, entry depends only on cost kt and takes a

threshold-form. Entrants with entry costs above a certain level are deterred from entering,

while entrants with an entry cost below this threshold participate in the auction.

For concision, we focus on extending the main empirical predictions of our model. Ap-

pendix B provides further details on optimal cartel behavior.

Proposition 4 (the effect of minimum prices on bids). (i) Under collusion, there exists

η > 0 such that for all p ∈ [β∗0(c), β∗0(c) + η], q > p, and E ∈ {0, 1},

prob(β∗p ≥ q|β∗p ≥ p, E) ≤ prob(β∗0 ≥ q|β∗0 ≥ p, E).

(ii) Under competition, for all p > 0, q > p, and E ∈ {0, 1},

prob(βcomp
p ≥ q|βcomp

p > p,E) = prob(βcomp
0 ≥ q|βcomp

0 > p,E).

In other words, the contrasting comparative statics of Proposition 2 continue to hold

conditional on the entrant’s entry decision.

A notable new prediction is that under collusion minimum prices have different impacts

on cartel and entrant winners.

Proposition 5 (differential effect of minimum prices on bids). Under collusion, there exists

η > 0 such that, for all p ∈ [β∗0(c), β∗0(c) + η] and all q > p:

(i) prob(β∗p ≥ q|β∗p ≥ p, E, cartel wins) ≤ prob(β∗0 ≥ q|β∗0 ≥ p, E, cartel wins);

(ii) prob(β∗p ≥ q|β∗p ≥ p, entrant wins) = prob(β∗0 ≥ q|β∗0 ≥ p, entrant wins).

In words, minimum prices should only affect the right tail of winning bids when the

winners are cartel members. The intuition behind this stark prediction is straightforward.

17



Since costs are complete information, under optimal entry deterrence entrants either win

at the minimum price, or at their production cost. As a result the right tail of winning

bids conditional on an entrant being the winner is independent of the cartel’s continuation

values, and independent of the minimum price. The prediction holds approximately if cartel

members only get a noisy but precise signal of the entrant’s production cost.

5 Empirical Analysis

Sections 2, 3 and 4 lay out a transparent, but still intricate mechanism by which minimum

prices can affect the distribution of winning bids. This empirical section aims to assess the

relevance of this mechanism in a real life context and answer the following questions: are

enforcement constraints binding? are they affected by minimum prices? how is within-cartel

discipline affected? how is entry affected?

We provide empirical answers to these questions using auction data from several Japanese

cities located in the Ibaraki prefecture. The analysis focuses on the three cities among the

ten largest for which data was available: Tsuchiura, Tsukuba and Ushiku. The data covers

public work projects auctioned off between May 2007 and March 2015, corresponding to

3103 auctions, including 1565 for the treatment city (Tsuchiura).

Throughout the period, all cities use first-price auctions. On October 28th 2009, the city

of Tsuchiura implemented a policy change, moving from a zero minimum price to a strictly

positive minimum price ranging between 70% and 85% of the reserve price. The remaining

cities use first-price auctions with no minimum price throughout the period.8 This lets us

explore the effect of minimum prices on bidder behavior using a differences-in-differences

approach.

8Minimum prices are calculated according to an explicit formula that applies pre-specified discount rates
to engineering estimates of different components of the project.
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5.1 Some facts about the data

Sample selection. The sample of cities was selected as follows. In a study of paving

auctions, Ishii (2008) notes the use of minimum prices in Japanese procurement auctions.

The author was able to point us to our treatment city. We then proceeded to search for all

publicly available data from the 10 most populous cities in the prefecture. We kept all cities

that had public data available covering the relevant policy-change period. This left us with

the three cities included in the study. The cities are broadly comparable: their population

ranges from 82K to 215K, with Tsuchiura at 143K.9 They are located within 15km of one

another, and within 75km of Tokyo. We treat these three cities as distinct markets, and

present supporting evidence that this is indeed the case in Section 6.

Policy change. The minimum prices used in our treatment city are chosen by a formal

rule and should not be interpreted as having any signalling content. Minimum prices range

between 70% to 85% of the reserve price, with the 25th, 50th and 75th quantiles respectively

at 80%, 82% and 84%. There is no evidence that the policy change was triggered by city

specific factors also affecting the distribution of bids. Publicly available policy documents,

as well as exchanges with city officials confirm that minimum prices were introduced to avoid

excessively low bids that could only be executed at the expense of quality.10 Throughout

the analysis we include city specific time-trends and control for Japanese GDP.

Descriptive statistics. Some facts about our sample of auctions are worth noting. The

first is that although all auctions include a reserve price, these reserve prices are not set along

the lines of Myerson (1981) or Riley and Samuelson (1981) to extract greater surplus for

the city. Rather, consistent with recorded practice, reserve prices are engineering estimates

(Ohashi, 2009, Tanno and Hirai, 2012, Kawai and Nakabayashi, 2014), that provide an upper-

9Notable trivia: Tsuchiura is a sister city of Palo Alto, CA.
10See http://www.city.tsuchiura.lg.jp/data/doc/1394785303_doc_10_0.pdf for policy documents

as well as Online Materials for a translation.
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bound to the range of possible costs for the project. This is corroborated by the fact that

99.7% of auctions have a winner. This lets us treat reserve prices as an exogenous scaling

parameter and use it to normalize the distribution of bids to [0, 1].11 Normalized winning

bids are defined as follows:

norm winning bid =
winning bid

reserve price
.

This normalization lets us take to data the comparative statics of Propositions 2, 3 and 4

even though there is heterogeneity in minimum prices. Indeed, our first-order stochastic

dominance comparative statics hold for normalized-bids conditional on reserve prices. Fur-

thermore the ratio of minimum price to reserve price is very homogeneous (the 25th quantile

being at .8 and the 75th quantile at .84). Provided that the distribution of reserve prices is

unchanged around the policy change, this implies (by integrating over reserve prices) that

the comparative statics of Propositions 2, 3 and 4, hold for normalized-bids, conditional on

normalized bids being above the minimum-price-to-reserve-price ratio. We provide evidence

that reserve prices are unaffected by treatment in Appendix A (see Tables A.2 and A.3). As

a robustness test, we also study the distribution of log-winning-bids using reserve prices as

a control variable (see Table A.4 and Figure A.1). Our findings are unchanged.

The distribution of winning bids is closely concentrated near reserve prices. Indeed, the

aggregate cost savings from running an auction rather than using reserve prices as a take-it-

or-leave-it offer are equal to 4.9%. This could be because reserve prices are obtained through

very precise engineering estimates, but this provides justifiable concern that collusion may be

going on. It is also worth observing that the 10th quantile of the distribution of normalized

winning bids is equal to 83% of the reserve price. This means that minimum prices (set

within 70% and 85% of reserve prices) are in the low quantiles of the distribution of winning

11Appendix A replicates the analysis using log winning bids rather than normalized bid, and using log
reserve prices as a control. Qualitative results are unaffected, and the coefficient on log reserve prices is
precisely estimated as 1.
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bids (the median minimum price is in the first decile of the distribution of winning bids),

plausibly satisfying the premise of Propositions 2(i), 3(ii) and 4(iii).

This implies clear predictions: if there is no-collusion the introduction of a low minimum

price should not change the right tail of wining bids; if there is collusion, we anticipate a

drop in the right tail of winning bids.

5.2 The impact of minimum prices on the distribution of winning

bids

Figure 1 plots distributions of normalized winning bids in treatment and control cities before

and after the policy change (which occurred on October 28th 2009). The data appears well

suited to a differences in differences approach. The distribution of normalized winning bids in

the control cities seems essentially unchanged, while the distribution of normalized winning

bids in the treatment city experiences a significant change.
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Figure 1: distribution of winning bids, before and after treatment: 2007-2009, 2009-2011.

We take a first pass at the data using a simple difference-in-differences approach. We
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define variables

window = 1date∈{October 28th 2009±24 months},

policy change = window × 1date≥October 28th 2009

and perform both OLS and quantile regressions of the linear model with city fixed-effects,

year fixed-effects and city-specific trends:

norm winning bid ∼ β0window + β1policy change+ β2 logGDP

+ year fe+ city fe+ city trends. (2)

The outcome of regression (2), summarized in Table 1 strongly vindicates the mecha-

nism we analyze in Sections 2, 3 and 4. The introduction of minimum prices is associated

with a first-order stochastic dominance drop in the right tail of winning bids (in particular

winning bids above the 10 % quantile corresponding to minimum prices). This implies that

there is collusion in the data, that cartel enforcement constraints are binding, and that the

sustainability of collusion is limited by price constraints.

Note that the mean effect of minimum prices on the average winning bid is meaningful.

Given that running an auction yields a roughly 5% drop in procurement costs, a 1.2% drop

in winning bid corresponds to a 24% increase in the effectiveness of auctions.
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norm winning bid mean 25th quantile 50th quantile
window -0.006 0.003 -0.004

(0.006) (0.006) (0.004)
policy change -0.012∗∗ -0.073∗∗∗ -0.009∗∗∗

(0.005) (0.006) (0.003)
ln gdp 0.145∗∗∗ 0.059 -0.037

(0.056) (0.063) (0.035)
∗∗∗, ∗∗ and ∗ respectively denote effects significant at the .1, .05 and .01 level.

Table 1: Difference in differences analysis of the effect of minimum prices on normalized
winning bids; N= 3070.

We compare more accurately the effect of minimum prices on the quantiles of winning

bids using the framework of Athey and Imbens (2006).

Change-in-changes. The framework of Athey and Imbens (2006) allows us to compute

counterfactual estimates of the distribution of normalized winning bids in our treatment city,

absent minimum prices. The actual and counterfactual quantiles of normalized winning bids,

conditional on prices being above 80% of the reserve price are given in Table 2 and Figure

2.12 We use both Tsukuba and Ushiku as a controls.13

quantile of conditional dist 0.1 0.25 0.5 0.75 0.9
actual – counterfactual -0.051∗∗∗ -0.054∗∗∗ 0.003 0.004 0.004∗

std error (0.018) (0.02) (0.005) (0.003) (0.003)
actual 0.833 0.881 0.959 0.977 0.984

counterfactual 0.884 0.935 0.956 0.973 0.98

Table 2: quantiles of the actual and counterfactual conditional distributions of normalized
winning bids (> .8)

We emphasize that the quantiles reported here are those of the distribution of normalized

12The results are unchanged if we consider the distribution of normalized winning bids conditional on
prices being above .75, .82, or .85 of the reserve price, or if we use raw winning bids. See Appendix A for
details.

13We do not merge the control data. This would bias results since the relative sample size of the pre
and post period is different across control cities. Instead we separately run the algorithm of Athey and
Imbens (2006) for each control city, and then average the corresponding counterfactual estimates. We report
bootstrapped standard errors for our aggregated estimates.
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winning bids, conditional on the winning bid being above 80% of the reserve price.
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Figure 2: Actual and counterfactual conditional distributions of normalized winning bids;
quantile differences; (min price/reserve price > .8).

The data is clear: there is a significant first-order stochastic dominance drop in the

conditional distribution of winning bids. Propositions 2, 3 and 4 provide an unambiguous

interpretation for this finding: (i) there is collusion; (ii) the cartel is constrained by enforce-

ment constraints; (iii) these enforcement constraints are worsened by the introduction of

minimum prices.

Single city regression. Our analysis going forward focuses on better understanding the

channels by which price constraints affect the distribution of winning bids. For this purpose,

we must rely on data from our treatment city alone. This is due to data restrictions: public
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data available from our treatment city provides detailed information about individual auc-

tions, including the names of bidders and their bids. No such data is available in our control

cities.

We use a before/after design and begin by replicating the results from our differences-in-

differences framework.14 Recall the definition of variables

window = 1date∈{October 28th 2009±24 months},

policy change = window × 1date≥October 28th 2009.

We perform both OLS and quantile regressions of the linear model

norm winning bid ∼ β0 + β1window + β2policy change+ βcontrols (3)

where controls (used throughout the analysis) include Japanese logGDP as well as the

current year.

norm winning bid mean 25th quantile 50th quantile
window 0.001 -0.002 0.003

(0.007) (0.01) (0.004)
policy change -0.021∗∗∗ -0.077∗∗∗ -0.011∗∗∗

(0.006) (0.008) (0.003)
ln gdp 0.434∗∗∗ 0.457∗∗∗ 0.107∗∗∗

(0.068) (0.101) (0.04)
year 0.005∗∗∗ 0.003∗ 0.003∗∗∗

(0.001) (0.002) (0.001)

Table 3: The effect of minimum prices on winning bids; N = 1539.

While the results are not precisely identical, these magnitudes match those of our difference-

in-differences design (Table 1), which gives us some confidence that our controls are sufficient

14This analysis implicitly assumes that pre-change behavior wasn’t affected by expectations of change,
and that post-change behavior adjusted immediately to its new environment. Appendix A shows that our
results are robust to excluding auctions occuring in the 6 months before and after the policy change.
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to make a single-city analysis not-implausible.

5.3 The Impact of minimum prices on entry and cartel behavior

We wish to better understand the channels through which minimum prices affect the distri-

bution of winning bids. Our model makes specific predictions: we anticipate that minimum

prices should affect the distribution of winning bids for cartel winners, but not for entrant

winners (Proposition 5). In addition, we are interested in understanding how the effect of

minimum prices breaks down along greater entry, and worse collusion among cartel members,

keeping entry constant.

Consistent with the theory, we define cartel members and entrants according to the

frequency with which they participate in auctions. Our treatment city exhibits considerable

heterogeneity in the degree of bidder activity over the seven years spanned by our data. The

median number of auctions a bidder participates in is 4, whereas the average is at 22. The

25% most active bidders make up 80% of the auction×bidder data. Accordingly, we define

as cartel members the 25% most active bidders (58 out of 234 bidders). We define entrants

as non-cartel-members.

Greater entry vs. worse collusion. We assess the relative importance of greater entry

and worse within-cartel enforcement by first assessing the impact of minimum prices on

entry, and second, by assessing the impact of minimum prices on winning bids, controlling

for entry. We report regressions using both the number of entrants, and the total number of

bidders to measure broader participation by cartel members. The data suggests that cartel

participation itself is affected by minimum prices, which is not captured in our model.

As expected, minimum prices increase both entry and participation. Table 4 reports the
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results from OLS estimation of the following linear models:

num entrants ∼ β0 + β1window + β2policy change+ βcontrols (4)

num bidders ∼ β0 + β1window + β2policy change+ βcontrols (5)

∼ β0 + β1window + β2policy change+ β3num entrants+ βcontrols (6)

num entrants num bidders num bidders num bidders
window -0.495∗∗∗ -0.781∗∗∗ -.552∗∗∗ -.521∗∗∗

(0.134) (0.176) (.166) (.158)
policy change 0.434∗∗∗ 0.873∗∗∗ .673∗∗∗ .711∗∗∗

(0.107) (0.141) (.133) (.127)
ln gdp -5.031∗∗∗ -2.18 .144 1.11

(1.321) (1.733) (1.631) (1.56)
year -0.042∗ -0.394∗∗∗ -.375∗∗∗ -.41∗∗∗

(0.022) (0.029) (.027) (.026)
num entrants .462∗∗∗ .503∗∗∗

(.031) (.03)
ln reserve price .426∗∗∗

(.026)

Table 4: The effect of minimum prices on entry and participation; N = 1539.

The introduction of minimum prices has a significant effect on both entry and participa-

tion by cartel members, adding on average .43 entrants and .87 bidders to auctions. These

numbers are large given that the mean and median number of participants per auction are

respectively 3.8 and 4. Note that participation increases even controlling for new entrants,

suggesting that participation by cartel members is an endogenous decision. The results are

unchanged when controlling for the auction’s reserve price.

Next, we examine the effect of minimum prices on winning bids controlling for partici-

pation, using the linear model

norm winning bid ∼ β0 + β1window+ β2policy change+ β3num bidders+ βcontrols. (7)
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whose estimates are reported in Table 5. Regression (7) assigns similar shares of the drop in

norm winning bid mean 25th quantile 50th quantile
window -0.008 -0.009 -0.004

(0.007) (0.011) (0.004)
policy change -0.01∗∗ -0.055∗∗∗ -0.01∗∗∗

(0.005) (0.009) (0.003)
num bidders -0.012∗∗∗ -0.011∗∗∗ -0.01∗∗∗

(0.001) (0.002) (0.001)
ln gdp 0.408∗∗∗ 0.392∗∗∗ 0.096∗∗

(0.065) (0.105) (0.038)
year 0.0 -0.002 -0.001

(0.001) (0.002) (0.001)

Table 5: The effect of minimum prices on winning bids, controlling for participation; N =
1539.

normalized winning bids (−2.1%, Table 3) to the “greater-entry” channel (−1.2% × .87 =

1.04%) and the “worse within-cartel collusion” channel (−1%). This suggests that the total

effect of minimum prices on winning bids is mediated in roughly equal shares through greater

entry, and worse enforcement among cartel members.

We emphasize that the findings of Table 5 do not arise naturally from a model of com-

petitive bidding: controlling for the number of bidders, minimum prices should not cause

a first-order stochastic dominance drop in the right tail of winning bids under competition

(Proposition 4).

Who does the policy change affect? Proposition 5 offers another test of the mechanism

analyzed in Sections 2, 3 and 4. Under collusion, our theory predicts that the price paid by

winning cartel members should go down, but not the price paid by winning entrants. The

opposite should hold under competition. OLS estimates of the linear model

norm winning bid ∼ β0 + β1window + β2cartel winner + β3policy change

+ β4cartel winner × policy change+ βcontrols (8)
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are reported in Table 6. The findings are entirely consistent with the predictions of our

normalized winning bid
cartel winner 0.027∗∗∗ 0.028∗∗∗

(0.005) (0.005)
cartel winner × policy change -0.027∗∗∗ -0.022∗∗

(0.009) (0.009)
window 0.0 -0.009

(0.007) (0.007)
policy change 0.002 0.009

(0.009) (0.009)
ln gdp 0.428∗∗∗ 0.399∗∗∗

(0.068) (0.065)
year 0.005∗∗∗ 0.0

(0.001) (0.001)
num bidders -0.012∗∗∗

(0.001)

Table 6: The effect of minimum prices on cartel members and entrants; N = 1539.

model under collusion: absent minimum prices, cartel winners obtain contracts at higher

prices; the introduction of minimum prices reduces winning bids only for cartel winners and

not for entrant winners.

Auction size. The mechanism we develop in Sections 2, 3 and 4 argues that minimum

prices affect the sustainability of collusion by reducing the cartel’s enforcement capabilities,

or in other terms by reducing the pledgeable surplus across cartel members. This mechanism

should be stronger when obedience constraint (1) binds. If auction size varies over time, the

deviation temptation will vary over time whereas continuation values will remain stable,

suggesting that obedience may be more binding when the auction size is large. If this is true

and our mechanism is correct, we should expect minimum prices to have a larger effect on

larger auctions.

The scale of projects, measured by their reserve price, exhibits significant heterogenity:

the 25th, 50th and 75th quantiles of reserve prices being respectively at ¥5M, ¥13M, and
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¥29M. We define an auction as large whenever its reserve price is above the 75th quantile of

reserve prices and estimate relationships of the form

norm winning bid ∼β0 + β1cartel winner + β2cartel winner × policy change (9)

+ β3window + β4policy change+ βcontrols

conditional on auction size.

norm winning bid if large if not large
cartel winner 0.026∗∗∗ 0.025∗∗∗ 0.027∗∗∗ 0.026∗∗∗

(0.009) (0.008) (0.006) (0.006)
cartel winner × policy change -0.059∗∗∗ -0.056∗∗∗ -0.019∗ -0.013

(0.018) (0.016) (0.011) (0.01)
window -0.011 -0.012 0.004 -0.007

(0.012) (0.011) (0.008) (0.008)
policy change 0.025 0.025 -0.003 0.006

(0.017) (0.016) (0.01) (0.01)
ln gdp 0.177 0.396∗∗∗ 0.526∗∗∗ 0.452∗∗∗

(0.116) (0.107) (0.082) (0.079)
year 0.006∗∗∗ -0.003 0.004∗∗∗ 0.0

(0.002) (0.002) (0.001) (0.001)
num bidders -0.016∗∗∗ -0.012∗∗∗

(0.002) (0.001)

Table 7: The effect of minimum prices for large and small auctions; N = 386, 1153.

Table 7 shows that the effect of minimum prices is indeed concentrated on cartel mem-

bers participating in large auctions. The effect of the policy on cartel members is either

insignificant or much smaller for small auctions. The difference in coefficients (−5.9% for

large auctions, versus −1.9% for smaller auctions) is significant at the 5% level.
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6 Discussion

6.1 Summary

This paper provides a tractable framework to analyze the effect of price constraints on

repeated collusion. Our model delivers a simple intuition: price constraints limit the range

of continuation equilibrium payoffs, making cartel enforcement and entry deterrence more

difficult. Our model yields a number of transparent empirical predictions that allow us to test

whether there is collusion, whether cartel-enforcement constraints are binding, and whether

they are affected by minimum prices.

We take those predictions to procurement data from Japan, and confirm that the channel

emphasized in this paper (and more broadly in the relational contracting literature) is indeed

relevant. There is collusion, cartel enforcement constraints are binding, and price constraints

can weaken enforcement.

In the remainder of this section we provide additional empirical support for the main

qualitative features of our model and for our interpretation of the data. We also discuss

design issues related to the use of minimum prices as well as modeling challenges for future

work.

6.2 Further empirical investigation

Our model and our interpretation of the data relies on several assumptions which can be

motivated from data. We briefly summarize our findings below, and present more detailed

results in Appendix A.

Smooth equilibrium adjustments. Propositions 2, 3 and 4 provide a test of collusion

by contrasting the comparative statics of the distribution of winning bids following the

introduction of minimum prices, depending on whether we are in a collusive or competitive

environment. These comparative statics presume that bidders are in equilibrium given the

31



existing policy, which is necessarily an approximation. Indeed, although communication with

city officials suggest that the move to a minimum price format was unexpected, it is still

possible that the anticipation of the change may have affected behavior before the change, or

that behavior after the change did not immediately move to the equilibrium corresponding

to the new policy.

A priori, smooth equilibrium adjustment would bias estimates against our findings. And

indeed, replicating our analysis excluding auctions occurring in six months period before and

after the policy change strengthens our results (see Table A.1).

Separate markets. Our difference-in-differences analysis presumes that control cities are

not affected by the policy change. One concern with this assumption is that the cities we

study are very close from one an other. This improves the quality of our control since the

cities are presumably hit by the same local shocks, however, it is plausible that some of

the cartel members active in our treatment city may be active in our control cities. If that

is the case, the introduction of minimum bids in Tsuchiura may also cause a shift in the

distribution of bids in control cities.

Again, this effect if it is present should lead to an attenuation bias: part of the treatment

effect would be interpreted as a common shock. Still, we believe that the assumption of

separate markets is correct and argue so (see Appendix A) by showing that the bulk of

cartel members active in the treatment city are geographically much closer to the treatment

city than to control cities, whereas they should be more or less uniformly distributed if the

cities were an integrated market.

Changes in the distribution of reserve prices. The analysis of Section 5 describes

the behavior of normalized winning bids following the introduction of minimum prices. This

means that we include reserve prices as a left-hand side variable rather than a control.

Under the assumption that the distribution of reserve prices is unchanged, this allows us to
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implement the tests of first-order stochastic dominance described in Propositions 2, 3 and 4

with pooled data exhibiting heterogenous minimum prices.

The data broadly supports the assumption that reserve prices are unchanged. A Kolmogorov-

Smirnov test accepts the H0 hypothesis that the distribution of reserve prices is the same

before and after the change with an exact p-value of .49. The result also holds for the

distributions of residuals controlling for trends and GDP (see Tables A.2 and A.3).

Appendix A further complements this argument by replicating the analysis of Section 5

using log bids on the left-hand side, and controlling for reserve prices on the right-hand side.

The qualitative findings are unchanged.

Observable participation. Our model assumes that players have complete information

about costs and observe participating bidders. This assumption does not play an essential

role in our tests: it simplifies the analysis of our H1 model (“there is collusion”), but does

not affect the analysis of our H0 hypothesis (“the market is competitive”).

Still we are able to motivate one important aspect of the model: the assumption that

participation is observed. We test this hypothesis by estimating the effect of entrant par-

ticipation and cartel participation on realized bids (winning or not). Table A.5 summarizes

the results: even controlling for auction size through reserve prices, both entrant and car-

tel participation have a significant effect on bids. This implies that participants must have

information about the set of bidders and vindicates our modeling choice.

6.3 Design and Modeling Challenges

The findings of this paper suggest that minimum prices may weaken collusion in meaningful

ways. A natural question is whether this insight can be used for auction design. The trade-

offs involved are not obvious: minimum prices can lower the tail of winning bids to the

right of the minimum price, but they also increase the tail of winning bids to the left of the

minimum price. The only unambiguous improvement is to introduce minimum prices that
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are never binding, i.e. minimum prices below the distribution of winning bids (conditional

on observables). In this case minimum prices necessarily lower the cost of procurement.15

Evaluating the effect of introducing minimum prices in the interior of the support of

winning bids requires us to identify of the distribution of firms’ costs under the assumption

of collusion. Such a quantitative interpretation stretches the limits of our simple model

of collusion (although procurement costs are in fact identified from winning bids in our

model). Assumptions such as transferrability, complete information or observed participation

make the derivation of predictions under our H1 hypothesis transparent. However, from a

quantitative perspective, these assumptions lead us to overestimate the bidders’ ability to

collude and therefore underestimate the distribution of costs. A credible structural model

would need to take repeated game frictions seriously.

Beyond the need to take repeated game frictions more seriously, some empirical findings

suggest modeling challenges that our work does not address. The first is that participation

of cartel members is affected by the introduction of minimum prices, meaning that it is en-

dogenous (see Table 4; the number of bidders increase following the introduction of minimum

prices, even controlling for the number of entrants). Endogenously limiting participation by

entrants could make sense in a model where firms learn their cost of production over the

course of the procurement auction itself. We feel that this question deserves independent

treatment. The second challenging finding is that cartel members avoid bids that may appear

collusive. In particular the distribution of winning bids in our data has density up to the

reserve price, but has no point mass at the reserve price. This is an unlikely outcome under

our model of collusion: there should either be no density at the reserve price, or mass at the

reserve price. One interpretation is that bidders are playing under the threat of investigation

and that bidding at the reserve price is suspicious behavior. The impact of such threats on

15One design subtlety worth emphasizing is that the minimum prices studied in this paper are not indexed
on bids. In some settings (e.g. Italy) minimum prices are set as an increasing function of submitted bids (e.g.
a quantile of submitted bids, Conley and Decarolis (2011), Decarolis (2013)). We expect such minimum price
policies to be less effective than fixed minimum prices in deterring collusion: by coordinating on low bids,
cartel bidders can still bring minimum prices down, blunting the effect that the policy has on punishments.
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collusive behavior deserves a proper theoretical treatment.

Appendix

A Further Empirical Exploration

Smooth equilibrium transition. A potential concern with the analysis in Section 5

is that it implicitly assumes that firms’ bidding behavior prior to the introduction of the

minimum price was not affected by expectations of change, and that their behavior after

the introduction of minimum prices adjusted immediately to the new environment. We have

argued that this should bias results against our findings.

We further address these concerns by performing OLS and quantile regressions on the

linear model (3), excluding the data on auctions that were conducted within six months

before or after the policy change. Table A.1 reports the results. Our results are strengthened.

norm winning bid mean 25th quantile 50th quantile
window 0.015∗∗ 0.008 0.008∗

(0.006) (0.008) (0.004)
policy change -0.037∗∗∗ -0.093∗∗∗ -0.017∗∗∗

(0.006) (0.007) (0.004)
lngdp 0.246∗∗∗ 0.235∗∗∗ 0.064

(0.068) (0.088) (0.043)
year 0.006∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.001) (0.001) (0.001)

Table A.1: The effect of minimum prices on winning bids, excluding auctions occuring around
the policy change; N = 1364.

Separate Markets. We now provide support for the assumption that markets are sep-

arate. The argument is geographical and uses the fact that bidder names are publicly

available in our treatment city. This allows us to geolocate all cartel bidders, and compute
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their (straight line) distance to treatment and control cities. We then compute two measures

of proximity indicating that the three markets are not integrated.

The first metric is the proportion of cartel bidders whose closest city is Tsuchiura (treat-

ment) rather than Tsukuba or Ushiku (controls). If the three markets were integrated, given

that the population of Tsuchiura is bracketed by that of the control cities, we should expect

roughly 1/3 of cartel bidders to have Tsuchiura as their closest location. Instead the number

in our data is 87%.

Our second metric compares the share of bidders within a fixed radius from each city.

Given a quantile Q, we compute the Qth quantile radius for Tsuchiura, i.e. the distance dQ

such that a proportion Q of cartel bidders are within distance dQ of Tsuchiura. We then

compute the proportion of cartel bidders within distance d of either control cities. Since the

distance between control cities is roughly equal to the distance between Tsuchiura and each

control city, if the markets were integrated, we would expect that a proportion Q of cartel

bidders would be within distance dQ of each control city. This is not the case: for Q = .5,

the proportion of cartel bidders within distance dQ of control cities is exactly equal to 0; for

Q = .75, it is 13%. This suggests that markets are indeed separate.

Changes in the distribution of reserve prices. As we discussed in Section 6 it is

important to clarify that changes in the distribution of normalized bids are not driven by

changes in the distribution of reserve prices. We test whether reserve prices are affected

by the policy change by running a Kolmogorov-Smirnov test on the raw distribution of log

reserve prices before and after the policy change. We also run a Kolmogorov-Smirnov test

on the distributions of residuals obtained from running the regression

ln reserve price ∼ β0 + β1window + β2ln gdp+ β3year.
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raw distribution (p-value) residual distribution
before < after 0.646 .791
after < before 0.261 .075

combined .490 .139

Table A.2: Exact Kolmogorov-Smirnov tests; N = 1539.

We further run OLS and quantile regressions of the linear model

log reserve price ∼ β0 + β1window + β3policy change+ βcontrols. (10)

The results are summarized in Tables A.2 and A.3. Both Kolmogorov-Smirnov tests

accept equality. Three out of the four moments reported in Table A.3 are insignificantly

affected by the policy change. The effect, if any, seems to be a reduction in reserve prices

following the policy change. This would tend to bias estimators against our results: if reserve

prices tend to be lower after the policy change, keeping winning bids constant, this should

mechanically increase normalized bid rather than diminish them.

ln reserve price mean 25th quantile 50th quantile 75th quantile
window -0.025 -0.015 0.181 -0.154

(0.116) (0.169) (0.159) (0.148)
policy change -0.132 -0.073 -0.374∗∗∗ -0.056

(0.092) (0.135) (0.127) (0.118)
lngdp -1.778 0.403 0.707 -4.096∗∗∗

(1.136) (1.665) (1.559) (1.456)
year 0.086∗∗∗ 0.048∗ 0.088∗∗∗ 0.083∗∗∗

(0.019) (0.028) (0.026) (0.025)

Table A.3: The impact of treatment on reserve-prices; N = 1539.

We also ensure that our results continue to hold if we use log bids on the left hand side

and control for reserve prices on the right-hand side. Table A.4 reports OLS and quantile

estimates of the linear model binning auctions according to large (> 75th quantile) and small

(< 75th quantile) reserve prices.
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large small
ln winning bid mean 25th q. 50th q. mean 25th q. 50th q.
cartel member 0.039∗∗∗ 0.004 -0.004 0.029∗∗∗ 0.048∗∗∗ 0.02∗∗∗

(0.012) (0.011) (0.007) (0.007) (0.014) (0.003)
cartel policy change -0.078∗∗∗ -0.103∗∗∗ -0.023∗ -0.02 -0.07∗∗∗ -0.006

(0.023) (0.022) (0.012) (0.013) (0.024) (0.006)
window -0.016 0.002 0.006 0.003 0.0 0.001

(0.016) (0.015) (0.008) (0.01) (0.019) (0.005)
policy change 0.045∗ -0.01 -0.019 -0.003 -0.019 0.002

(0.023) (0.022) (0.012) (0.012) (0.024) (0.006)
ln reserve 0.999∗∗∗ 1.006∗∗∗ 1.005∗∗∗ 1.007∗∗∗ 1.006∗∗∗ 1.004∗∗∗

(0.005) (0.005) (0.003) (0.003) (0.006) (0.001)
lngdp 0.274∗ 0.116 0.006 0.598∗∗∗ 0.675∗∗∗ 0.157∗∗∗

(0.157) (0.146) (0.083) (0.097) (0.188) (0.046)
year 0.006∗∗ 0.003 0.005∗∗∗ 0.005∗∗∗ 0.002 0.002∗∗

(0.003) (0.002) (0.001) (0.002) (0.003) (0.001)

Table A.4: The effect of mininmum prices on log winning bids conditional for large and small
reserve prices; N = 386, 1153.

Observability of participation. To assess whether the assumption of observable partic-

ipants is plausible, we compute OLS estimates of linear models

norm bid ∼β0 + β1window + β2policy change+ β3num entrants

+ β4num cartel participants+ βcontrols

ln bid ∼β0 + β1window + β2policy change+ β3num entrants

+ β4num cartel participants+ β5ln reserve+ βcontrols

for all (bidder, auction) pairs. For concision we do not reports coefficients for control variables

(year and log GDP).

The data supports the assumption that participation is observable. Indeed, even con-

ditional on auction size (proxied here by the reserve price), both the realized number of

entrants and the realized number of participating cartel members have a significant effect on

bids.
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norm bid ln bid
window -0.003 -0.005

(0.006) (0.007)
policy change -0.024∗∗∗ -0.023∗∗∗

(0.005) (0.006)
num entrants -0.012∗∗∗ -0.014∗∗∗

(0.002) (0.003)
num cartel -0.011∗∗∗ -0.013∗∗∗

(0.001) (0.001)
ln reserve 1.008∗∗∗

(0.003)

Table A.5: Bid (winning or not) as a function of realized participation; N = 5898, clustered
by auction id.

Sensitivity analysis. The analysis of Section 5 is not sensitive to small departures from

our main specification. We illustrate this by presenting a few robustness checks that include:

varying the threshold for normalized winning bids; using log-bids rather than normalized

bids; using a two year window around the policy change rather than a four year window.

We first replicate the change-in-changes estimate (corresponding to Table 2 and Figure

2) of the counterfactual conditional distribution of bids for different specification. We use

normalized bid thresholds equal to .75 and .82 and estimate the effect of policy change on

both normalized bids and log-bids. The results are summarized in Figure A.1.

The single city analyses presented in Section 5 is also robust to the specification of the

window around the policy change. Define the two year window and policy change variable

windowB = 1date∈{October 28th 2009±12 months},

policy changeB = windowB × 1date≥October 28th 2009

and perform both OLS and quantile regressions on the linear model

norm winning bid ∼ β0 + β1windowB + β2policy changeB + βcontrols.
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(a) c.d.f. of normalized bids and actual – counterfactual quantile difference, threshold = .75
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(b) c.d.f. of normalized bids and actual – counterfactual quantile difference, threshold = .82
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(c) c.d.f. of log bids and actual – counterfactual quantile difference, threshold = .75
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(d) c.d.f. of log bids and actual – counterfactual quantile difference, threshold = .82

Figure A.1: actual and counterfactual conditional c.d.f. of normalized winning bids

Table A.6 reports the results. The effects are very similar to those obtained using a four

year window.
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norm winning bid mean 25th quantile 50th quantile
windowB -0.011 -0.009 -0.001

(0.007) (0.012) (0.004)
policy changeB -0.015∗∗ -0.076∗∗∗ -0.01∗∗

(0.007) (0.012) (0.004)
ln gdp 0.385∗∗∗ 0.526∗∗∗ 0.131∗∗∗

(0.075) (0.125) (0.043)
year 0.004∗∗∗ 0.003∗∗ 0.003∗∗∗

(0.001) (0.001) (0.001)

Table A.6: the effect of minimum prices on winning bids

B Proofs

B.1 Proofs for Section 2

This appendix contains the proofs of Section 2. We start with a few preliminary observations.

First, since the game we are studying is a complete information game with perfect monitoring,

the set of SPE payoffs is compact (Proposition 2.5.2 in Mailath and Samuelson (2006)).

Hence, V p and V p are attained. Fix an SPE σ and a history ht. Let β(c), γ(c) and

T (c,b, γ,x) be the bidding and transfer profile that firms play in this equilibrium after

history ht. Let βW (c) and x(c) be, respectively, the winning bid and the allocation induced

by bidding profile (β(c), γ(c)). Let ht+1 = ht t (c,b, γ,x,T) be the concatenated history

composed of ht followed by (c,b, γ,x,T), and let {V (ht+1)}i∈N be the vector of continuation

payoffs after history ht+1. We let ht+1(c) = ht t (c, β(c), γ(c),x(c),T(c, β(c), γ(c),x(c)))

denote the on-path history that follows ht when current costs are c. Note that the following

inequalities must hold:

(i) for all i ∈ N̂ such that ci ≤ βW (c),

xi(c)(βW (c)−ci)+Ti(c, β(c), γ(c),x(c))+δVi(ht+1(c)) ≥ ρi(β
W , γ,x)(c)(βW (c)−ci)+δV p.

(11)
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(ii) for all i ∈ N̂ such that ci > βW (c),

xi(c)(βW (c)− ci) + Ti(c, β(c), γ(c),x(c)) + δVi(ht+1(c)) ≥ δV p. (12)

(iii) for all i ∈ N ,

Ti(c, β(c), γ(c),x(c)) + δVi(ht+1(c)) ≥ δV p. (13)

The inequality in (11) must hold since a firm with cost below βW (c) can obtain a payoff at

least as large as the right-hand side by undercutting the winning bid when βW (c) > p, or,

by bidding p and choosing γi = 1 when βW (c) = p. Similarly, the inequality in (12) must

hold since firms with cost larger than βW (c) can obtain a payoff at least as large as the

right-hand side by bidding more than βW (c). Finally, the inequality in (13) must hold since

otherwise firm i would not be willing to make the required transfer.

Conversely, suppose there exists a winning bid profile βW (c), an allocation x(c), a transfer

profile T and equilibrium continuation payoffs {Vi(ht+1(c)}i∈N that satisfy inequalities (11)-

(13). Then, (βW ,x,T) can be supported in an SPE as follows. For all c, all firms i ∈ N̂

bid βW (c). Firms i ∈ N̂ with xi(c) = 0 choose γi(c) = 0, and firms i ∈ N̂ with xi(c) > 0

choose γi(c) such that xi(c) = γi(c)/
∑

j γj(c). If no firm deviates at the bidding stage, firms

make transfers Ti(c, β(c), γ(c),x(c)). If no firm deviates at the transfer stage, in the next

period firms play an SPE that gives payoff vector {V (ht+1(c))}i∈N . If firm i deviates at the

bidding stage, there are no transfers and the cartel reverts to an equilibrium that gives firm

i a payoff of V p; if firm i deviates at the transfer stage, the cartel reverts to an equilibrium

that gives firm i a payoff of V p (deviations by more than one firm go unpunished). Since

(11) holds, under this strategy profile no firm has an incentive to undercut the winning bid

βW (c). Since (12) holds, no firm with ci > βW (c) and xi(c) > 0 has an incentive to bid

above βW (c) and lose. Upward deviations by a firm i with ci < βW (c) who wins the auction

are not profitable since the firm would lose the auction by bidding b > βW (c). Finally, since

(13) holds, all firms have an incentive to make their required transfers.
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Proof of Lemma 1. Let σ be an SPE that attains V p. Towards a contradiction, suppose

there exists an on-path history ht = ht−1 t (c, β(c), γ(c),x(c),T(c, β(c),x(c))) such that∑
i Vi(σ, ht) = V (σ, ht) < V p. Let {Vi}i∈N be an equilibrium payoff vector with

∑
i Vi = V p.

Consider changing the continuation equilibrium at history ht by an equilibrium that deliv-

ers payoff vector {Vi}i∈N , and changing the transfers after history ht−1t(c, β(c), γ(c),x(c)) as

follows. First, for each i ∈ N , let T̂i be such that T̂i+δVi = Ti(c, β(c), γ(c),x(c))+δVi(σ, ht).

Note that ∑
i

T̂i =
∑
i

{Ti(c, β(c), γ(c),x(c)) + δ(Vi(σ, ht)− Vi)} < 0,

where we used
∑

i Vi = V p >
∑

i Vi(σ, ht) and
∑

i Ti(c, β(c), γ(c),x(c)) = 0. For each

i ∈ N , let T̃i = T̂i + ε
n
, where ε > 0 is such that

∑
i T̃i =

∑
i T̂i + ε = 0. Replacing transfers

Ti(c, β(c), γ(c),x(c)) and continuation values Vi(σ, ht) by transfers T̃i and values Vi relaxes

constraints (11)-(13) and increases the total expected discounted surplus that the equilibrium

generates. Therefore, if σ attains V p, it must be that V (σ, ht) = V p for all on-path histories.

We now prove the second statement in the Lemma. Fix an optimal equilibrium σ, and

let {Vi}i∈N be the equilibrium payoff vector that this equilibrium delivers, with
∑

i Vi = V p.

For each c, let (β(c), γ(c)) be the bidding profile that firms use in the first period under σ,

and let x(c) denote the allocation induced by bidding profile (β(c), γ(c)). It follows that

V p = E

∑
i∈N̂

xi(c)(βi(c)− ci)

+ δV p ⇐⇒ V p =
1

1− δ
E

∑
i∈N̂

xi(c)(βi(c)− x(c))

 .
We show that there exists an optimal equilibrium in which firms use bidding profile (β(·), γ(·))

after all on-path histories. For any (c,b, γ,x), let Ti(c,b, γ,x) denote the transfer that firm

i makes at the end of the first period under equilibrium σ when first period costs, bids and

allocation are given by c, b, γ and x. Let Vi(h1(c)) denote firm i’s continuation payoff

under equilibrium σ after first period history h1(c) = (c, β(c), γ(c),x(c)). By our arguments

above,
∑

i Vi(h1(c)) = V p for all c. Since σ is an equilibrium, it must be that β(c), x(c),
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Ti(c,b, γ,x) and Vi(h1(c)) satisfy (11)-(13).

Consider the following strategy profile. Along the equilibrium path, at each period

t firms bid according to (β(·), γ(·)). For any (c, β(c), γ(c),x(c)), firm i makes transfer

T̂i(c, β(c), γ(c),x(c)) such that T̂i(c, β(c), γ(c),x(c))+δVi = Ti(c, β(c), γ(c),x(c))+δVi(h1(c)).

Note that

∑
i

T̂i(c, β(c), γ(c),x(c)) =
∑
i

{Ti(c, β(c), γ(c),x(c)) + δ(Vi(h1(c))− Vi)} = 0,

where we used
∑

i Ti(c, β(c), γ(c),x(c)) = 0 and
∑

i Vi(h1(c)) = V p =
∑

i Vi. If firm i de-

viates at the bidding stage or transfer stage, then firms revert to an equilibrium that gives

firm i a payoff of V p. Clearly, this strategy profile delivers total payoff V p. Moreover, firms

have the same incentives to bid according to (β, γ) and make their required transfers than

under the original equilibrium σ. Hence, no firm has an incentive to deviate at any stage

and this strategy profile can be supported as an equilibrium. �

Proof of Lemma 2. Suppose there exists an SPE σ and a history ht in which firms bid

according to a bidding profile (β, γ) that induces winning bid βW (c) and allocation x(c). Let

Ti(c, β(c), γ(c),x(c)) be firm i’s transfers at history ht when costs are c and all firms play

according to the SPE σ. Let ht+1(c) = ht t (c, β(c), γ(c),x(c),T(c, β(c), γ(c),x(c))) be the

on-path history that follows ht when costs are c, and let Vi(ht+1(c)) be firm i’s equilibrium

payoff at history ht+1(c). Since the equilibrium must satisfy (11)-(13) for all c,

∑
i∈N̂

{
(ρi(β

W , γ,x)(c)− xi(c))
[
βW (c)− ci

]+
+ xi(c)

[
βW (c)− ci

]−}
≤
∑
i∈N

Ti(c, β(c), γ(c),x(c)) + δ
∑
i∈N

(Vi(ht+1(c))− V p) ≤ δ(V p − nV p),

where we used
∑

i Ti(c, β(c), γ(c),x(c)) = 0 and
∑

i Vi(ht+1(c)) ≤ V p.
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Next, consider a winning bid profile βW (c) and an allocation x(c) that satisfies (1) for all

c. We now construct an SPE that supports βW (·) and x(·) in the first period. Let {Vi}i∈N

be an equilibrium payoff vector with
∑

i Vi = V p. For each i ∈ N and each c, we construct

transfers Ti(c) as follows:

Ti(c) =


−δ(Vi − V p) + (ρi(β

W , γ,x)(c)− xi(c))(βW (c)− ci) + ε(c) if i ∈ N̂ , ci ≤ βW (c),

−δ(Vi − V p)− xi(c)(βW (c)− ci) + ε(c) if i ∈ N̂ , ci > βW (c),

−δ(Vi − V p) + ε(c) if i /∈ N̂ ,

where ε(c) ≥ 0 is a constant to be determined below. Note that, for all c,

∑
i∈N

Ti(c)− nε(c)

=− δ(V p − nV p) +
∑
i∈N̂

{
(ρi(β

W , γ,x)(c)− xi(c))
[
βW (c)− ci

]+
+ xi(c)

[
βW (c)− ci

]−} ≤ 0,

where the inequality follows since βW and x satisfy (1). We set ε(c) ≥ 0 such that transfers

are budget balance; i.e., such that
∑

i∈N Ti(c) = 0.

The SPE we construct is as follows. At t = 0, for each c all participating firms bid

βW (c). Firms i ∈ N̂ with xi(c) = 0 choose γi(c) = 0, and firms i ∈ N̂ firms with xi(c) > 0

choose γi(c) > 0 such that xi(c) = γi(c)/
∑

j γj(c). If no firm deviates at the bidding stage,

firms exchange transfers Ti(c). If no firm deviates at the transfer stage, from t = 1 onwards

they play an SPE that supports payoff vector {Vi}. If firm i ∈ N deviates either at the

bidding stage or at the transfer stage, from t = 1 onwards firms play an SPE that gives

firm i a payoff V p (if more than one firm deviates, firms punish the lowest indexed firm that

deviated). This strategy profile satisfies (11)-(13), and so βW and x are implementable. �

Proof of Proposition 1. By Lemma 1, there exists an optimal equilibrium in which

firms use the same bidding profile (β, γ) at every on-path history. For each cost vector c, let
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βW (c) and x(c) denote the winning bid and the allocation induced by this bidding profile

under cost vector c.

We first show that βW (c) = b∗p(c) for all c such that b∗p(c) > p. Towards a contradiction,

suppose there exists c with βW (c) 6= b∗p(c) > p. Since x∗(c) is the efficient allocation, the

procurement cost under allocation x(c) is at least as large as the procurement cost under

allocation x∗(c). Since bidding profile (β, γ) is optimal, it must be that βW (c) > b∗p(c) > p.

Indeed, if βW (c) < b∗p(c), then the cartel would strictly prefer to use a bidding profile that

allocates the contract efficiently and has winning bid b∗p(c) under cost vector c than to use

bidding profile (β(c), γ(c)). By Lemma 2, βW (c) and x(c) must satisfy

δ(V p − nV p) ≥
∑
i∈N̂

{
(1− xi(c))

[
βW (c)− ci

]+
+ xi(c)

[
βW (c)− ci

]−}
≥
∑
i∈N̂

(1− x∗i (c))
[
βW (c)− ci

]+
,

which contradicts βW (c) > b∗p(c) > p. Therefore, βW (c) = b∗p(c) for all c such that b∗p(c) > p.

Next, we show that βW (c) = p for all c such that b∗p(c) ≤ p. Towards a contradiction,

suppose there exists c with b∗p(c) ≤ p and βW (c) > p. By Lemma 2, βW (c) and x(c) satisfy

δ(V p − nV p) ≥
∑
i∈N̂

{
(1− xi(c))

[
βW (c)− ci

]+
+ xi(c)

[
βW (c)− ci

]−}
≥
∑
i∈N̂

(1− x∗i (c))
[
βW (c)− ci

]+
,

which contradicts βW (c) > p ≥ b∗p(c). Therefore, βW (c) = p for all c such that b∗p(c) ≤ p.

Combining this with the arguments above, βW (c) = β∗p(c) = max{p, b∗p(c)}.

Finally, we characterize the allocation in an optimal equilibrium. Note first that under an

optimal bidding profile the cartel must allocate the procurement contract efficiently whenever

β∗p(c) > p. Indeed, by construction, the optimal allocation is sustainable whenever the

winning bid is β∗p(c) > p. Therefore, if the allocation was not efficient for some c with
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β∗p(c) > p, the cartel could strictly improve its profits by using a bidding profile with winning

bid β∗p(c) that allocates the good efficiently.

Consider next a cost vector c such that β∗p(c) = p. In this case, the cartel’s bidding

profile in an optimal equilibrium induces the most efficient allocation (i.e., the allocation

that minimizes expected procurement costs) consistent with (1) when the winning bid is p.

�

Proof of Corollary 1. Note that, for δ = 0, b∗p(c) = c(2) for all c. By Proposi-

tion 1, when δ = 0 the winning bid under the best equilibrium for the cartel is equal to

βcomp = max{c(2), p}. �

Fix a minimum price p. For every value V ≥ nV p and every c, let

bp(c;V ) ≡ sup

b ≤ r :
∑
i∈N̂

(1− x∗i (c))[b− ci]+ ≤ δ(V − nV p)

 ,

and let βp(c;V ) = max{bp(c;V ), p}. Note that βp(c;V ) would be the winning bid if the

cartel’s total surplus was equal to V . Let xp(c;V ) be the allocation under an optimal

equilibrium when the cartel’s total surplus is V . For every V ≥ nV p, let

Up(V ) ≡ 1

1− δ
E

∑
i∈N̂

xpi (c;V )(βp(c, V )− ci)

 ,
be the total surplus generated under a bidding profile that induces winning bid βp(c;V )

and allocation xp(c;V ). The winning bid and allocation in an optimal equilibrium are

β∗p(c) = βp(c;V p) and xp(c;V p), and so V p = Up(V p). Let

Up ≡ sup{V ≥ nV p : V ≤ Up(V )}.
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Lemma B.1. V p = Up.

Proof. Since V p = Up(V p), it follows that Up ≥ V p. We now show that Up ≤ V p. Towards

a contradiction, suppose that Up > V p. Hence, there exists Ṽ such that Up(Ṽ ) ≥ Ṽ > V p.

Let V = Up(Ṽ )

n
, and consider the following strategy profile. For all on-path histories, cartel

members use a bidding profile (β, γ) inducing winning bid βp(c; Ṽ ) and allocation xp(c; Ṽ ).

If firm i deviates at the bidding stage, there are no transfers and in the next period firms play

an equilibrium that gives firm i a payoff of V p (if more than one firm deviates, firms play an

equilibrium that gives V p to the lowest indexed firm that deviated). If no firm deviates at

the bidding stage, firms make transfers Ti(c) given by

Ti(c) =

 −δ(V − V p) + (ρi(βp,x
p)(c)− xpi (c; Ṽ ))(βp(c; Ṽ )− ci) + ε(c) if i ∈ N̂ , ci ≤ βp(c; Ṽ ),

−δ(V − V p) + ε(c) otherwise,

where ε(c) ≥ 0 is a constant to be determined.16 Note that

∑
i∈N

Ti(c)− nε(c) = −δ(Up(Ṽ )− nV p) +
∑
i∈N̂

((ρi(β
W , γ,x)(c)− xpi (c; Ṽ ))[βp(c; Ṽ )− ci]+ ≤ 0,

where the inequality follows since βp(c; Ṽ ) and xpi (c; Ṽ ) are the winning bid and the allo-

cation under an optimal equilibrium when the cartel’s total surplus is Ṽ ≤ Up(Ṽ ). We set

ε(c) ≥ 0 such that
∑

i Ti(c) = 0. If firm i deviates at the transfer stage, in the next period

firms play an equilibrium that gives firm i a payoff of V p (if more than one firm deviates,

firms play an equilibrium that gives V p to the lowest indexed firm that deviated). Other-

wise, in the next period firms continue playing the same strategy as above. This strategy

profile generates total surplus Up(Ṽ ) ≥ Ṽ > V p to the cartel. Since firms play symmetric

strategies, it gives a payoff V = Up(Ṽ )

n
to each cartel member. One can check that no firm has

an incentive to deviate at any stage, and so this strategy profile constitutes an equilibrium.

16Recall that xp(c; Ṽ ) is the allocation under an optimal equilibrium when continuation payoff is Ṽ .
Therefore, xp(c; Ṽ ) is such that xpi (c; Ṽ ) = 0 for all i with ci > βp(c; Ṽ ).
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This contradicts Up(Ṽ ) > V p, so it must be that Up ≤ V p. �

Proof of Lemma 3. We first establish part (i). Suppose that p ≤ c and fix equilibrium

payoffs {Vi}i∈N . Fix j ∈ N and consider the following strategy profile. At t = 0, firms’ be-

havior depends on whether j ∈ N̂ or j /∈ N̂ . If j ∈ N̂ , all firms i ∈ N̂ bid min{cj, c(2)} (where

c(2) is the second lowest procurement cost). Firm i ∈ N̂\{j} with cost ci < min{cj, c(2)}

chooses γi = 1, and firm i ∈ N̂\{j} with cost ci ≥ min{cj, c(2)} chooses γi = 0; firm j chooses

γj = 1 if cj < ci for all i 6= j, and chooses γj = 0 otherwise. Note that this bidding profile

constitutes an equilibrium of the stage game. If j /∈ N̂ , at t = 0 participating firms play

according to some equilibrium of the stage game. If all firms bid according to this profile,

firm j’s transfer is Tj = −δVj at the end of the period regardless of whether j ∈ N̂ or j /∈ N̂ .

The transfer of firm i 6= j is Ti = 1
n−1

δVj at the end of the period, so
∑

i Ti = 0. If no firm

deviates at the bidding or transfer stage, at t = 1 firms play according to an equilibrium

that delivers payoffs {Vi}. If firm i deviates at the bidding stage, there are no transfers and

at t = 1 firms play the strategy just described with i in place of j. If no firm deviates at

the bidding stage and firm i deviates at the transfer stage, at t = 1 firms play the strategy

just described with i in place of j (if more than one firm deviates at the bidding or transfer

stage, from t = 1 firms play according to an equilibrium that delivers payoffs {Vi}i∈N). Note

that this strategy profile gives player j a payoff of 0. Moreover, no firm has an incentive to

deviate at t = 0, and so V p = 0 for all p ≤ c.

Suppose next that p > c, and note that

V p ≥ vp ≡
1

1− δ
E
[

1

N̂
1ci≤p(p− ci)

]
> 0,

where the first inequality follows since vp is the minimax payoff for a firm in an auction with

minimum price p. This establishes part (i).
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We now turn to part (ii). Note that β∗0(c) = infc β
∗
0(c) = c + δV 0

n−1
> c.17 We now show

that there exists η > 0 such that V p − nV p < V 0 for all p ∈ [β∗0(c), β∗0(c) + η]. Fix η > 0

and p ∈ [β∗0(c), β∗0(c) + η]. For every V ≥ nV p and every c, let β̃p(c;V ) ≡ max{b0(c;V ), p}.

Since V p > 0 for all p > β∗0(c), it follows that b0(c;V ) ≥ bp(c;V ) for all c and all V ≥ nV p,

and so β̃p(c;V ) ≥ βp(c;V ) for all c and all V ≥ nV p. Define

Ũp(V ) ≡ 1

1− δ
E

∑
i∈N̂

x∗i (c)(β̃p(c;V )− ci)

 ,
and note that Ũp(V ) ≥ Up(V ) for all V ≥ nV p. Let Ṽp ≡ sup{V ≥ nV p : Ũp(V ) ≥ V }, so

that Ṽp ≥ V p. For all V ,

Ũp(V )− U0(V ) =
1

1− δ
E
[
(p− b0(c;V ))1{c:b0(c;V )<p}

]
> 0.

Note further that for all V and all c, b0(c;V ) ≥ c+ δV
n−1

. Let V̂ > 0 be such that c+ δV̂
n−1

=

β∗0(c) + η = c + δV 0

n−1
+ η; that is, V̂ = V 0 + (n−1)η

δ
> V 0. Then, for all p ∈ [β∗0(c), β∗0(c) + η]

and all V ≥ V̂ , b0(c;V ) ≥ p for all c, and so Ũp(V ) = U0(V ). Since V̂ > V 0, it follows

that V > U0(V ) = Ũp(V ) for all V ≥ V̂ , and so V̂ = V 0 + (n−1)η
δ

> Ṽp ≥ V p for all

p ∈ [β∗0(c), β∗0(c) + η].

Finally, let η > 0 be such that (n−1)η
δ

= nvβ∗
0 (c) = n 1

1−δE
[

1

N̂
1ci≤β∗

0 (c)(β
∗
0(c)− ci)

]
.18 Since

V p ≥ vp ≥ vβ∗
0 (c) for all p ∈ [β∗0(c), β∗0(c) + η],

V̂ = V 0 +
(n− 1)η

δ
> V p ⇒ V 0 > V p − nV p,

which completes the proof. �

17Indeed, β∗0(c) attains its lowest value when all cartel members participate in the auction and costs are

c = (c)i∈N (i.e., all firms have cost c). For this cost vector, β∗0(c) = c+ δV 0

n−1 .
18Recall that for all p, V p ≥ vp = 1

1−δE
[

1

N̂
1ci≤p(p− ci)

]
.
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B.2 Proofs of Section 3

Proof of Proposition 2. Consider first a collusive environment. By Proposition 1 and

Lemma 3, there exists η > 0 such that β∗p(c) ≤ β∗0(c) for all p ∈ [β∗0(c), β∗0(c)+η] and all c such

that β∗0(c) ≥ p, with strict inequality if β∗0(c) < r. Therefore, for all p ∈ [β∗0(c), β∗0(c) + η],

prob(β∗p > q|β∗p ≥ p) ≤ prob(β∗0 > q|β∗0 ≥ p), and the inequality is strict for some q > p

whenever prob(β∗0 < r) > 0. This proves part (i).

Under competition, for all p and all q > p, prob(βcomp
p > q|βcomp

p > p) = prob(c(2) >

q|c(2) > p) = prob(βcomp
0 > q|βcomp

0 > p). This proves part (ii). �

Proof of Proposition 3. We first show that there exists a symmetric equilibrium as

described in the statement of the proposition, and then we show uniqueness.

Consider first a minimum price p ≤ bAI(c). Clearly, in this case all firms using the bidding

function bAI(·) is a symmetric equilibrium of the auction with minimum price p.

Consider next the case in which bAI(c) < p. For any c ∈ [c, c], define

P (c) ≡
N̂−1∑
j=0

(
N̂ − 1

j

)
1

j + 1
F (c)j(1− F (c))N̂−j−1.

P (c) is the probability with which a firm with cost c′ ≤ c wins the auction if all firms use a

bidding function β(·) with β(c′) = b ≥ p for all c′ ≤ c and β(c′) > b for all c′ > c.

Let ĉ ∈ (c, c) be the unique solution to P (ĉ)(p − ĉ) = (1 − F (ĉ))N̂−1(bAI(ĉ) − ĉ).19 Let

bAIp (·) be given by

bAIp (c) =

 bAI(c) if c ≥ ĉ,

p if c < ĉ.

19Note first that such a ĉ always exists whenever bAI(c) < p. Indeed, in this case P (c)(p − c) = p − c >
bAI(c) − c, while P (p)(p − p) = 0 < (1 − F (p))N̂−1(bAI(p) − c). By the Intermediate value Theorem, there

exists ĉ ∈ [c, p] such that P (ĉ)(p− ĉ) = (1− F (ĉ))N̂−1(bAI(ĉ)− ĉ). Moreover, for all c ≤ p, ∂
∂cP (c)(p− c) =

−P (c) + P ′(c)(p− c) ≤ −P (c) < −(1− F (c))N̂−1 = ∂
∂c (1− F (c))N̂−1(bAI(c)− c), so ĉ is unique.
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Note that if all firms bid according to bidding function bAIp (·), the probability with which a

firm with cost c < ĉ wins the auction is P (ĉ). We now show that all firms bidding according

to bAIp (·) is an equilibrium.

Suppose that all firms j 6= i bid according to bAIp (·). Note first that it is never optimal

for firm i to bid b ∈ (p, bAIp (ĉ)). Indeed, if ci < bAIp (ĉ), bidding b ∈ (p, bAIp (ĉ)) gives firm

i a strictly lower payoff than bidding bAIp (ĉ): in both cases firm i wins with probability

(1−F (ĉ))N̂−1, but by bidding bAIp (ĉ) the firm gets a strictly larger payoff in case of winning.

If ci > bAIp (ĉ), bidding b ∈ (p, bAIp (ĉ)) gives firm i a strictly lower payoff than bidding bAIp (ci).

Suppose that ci ≥ ĉ. Since bAIp (x) = bAI(x) for all x ≥ ĉ, firm i with cost ci gets a larger

payoff bidding bAIp (ci) than bidding bAIp (x) with x ∈ [ĉ, c]. If ci = ĉ, firm i is by construction

indifferent between bidding p and bidding bAIp (ĉ). Moreover, for all ci > ĉ,

(1− F (ci))
N̂−1(bAIp (ci)− ci) ≥ (1− F (ĉ))N̂−1(bAIp (ĉ)− ĉ) + (1− F (ĉ))N̂−1(ĉ− ci)

= P (ĉ)(p− ĉ) + (1− F (ĉ))N̂−1(ĉ− ci)

> P (ĉ)(p− ĉ) + P (ĉ)(ĉ− ci),

where the strict inequality follows since P (ĉ) > (1 − F (ĉ))N̂−1 and ci > ĉ. Hence, firm i

strictly prefers to bid bAIp (ci) when her cost is ci > ĉ than to bid p. Combining all these

arguments, a firm with cost ci ≥ ĉ finds it optimal to bid bAIp (ci) when her cost is ci ≥ ĉ.

Finally, suppose that ci < ĉ. Firm i’s payoff from bidding bAIp (ci) = p is P (ĉ)(p − ci).

Note that, for all c ≥ ĉ,

P (ĉ)(p− ci) = P (ĉ)(p− ĉ) + P (ĉ)(ĉ− ci)

≥ (1− F (c))N̂−1(bAIp (c)− ĉ) + P (ĉ)(ĉ− ci)

> (1− F (c))N̂−1(bAIp (c)− ci),

where the first inequality follows since P (ĉ)(p − ĉ) = (1 − F (ĉ))N̂−1(bAIp (ĉ) − ĉ) ≥ (1 −
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F (c))N̂−1(bAIp (c)−ĉ) for all c ≥ ĉ, and the second inequality follows since P (ĉ) > (1−F (c))N̂−1

for all c ≥ ĉ and since ci < ĉ. Therefore, firm i finds it optimal to bid bAIp (ci) = p when her

cost is ci < ĉ.

Next we establish uniqueness. We start with a few preliminary observations. Fix an

auction with minimum price p > 0 and let bp be the bidding function in a symmetric

equilibrium. By standard arguments (see, for instance, Maskin and Riley (1984)), bp must

be weakly increasing; and it must be strictly increasing and differentiable at all points c such

that bp(c) > p. Lastly, bp must be such that bp(c) = c.20

Consider a bidder with cost c such that bp(c) > p, and suppose all of her opponents

bid according to bp. The expected payoff that this bidder gets from bidding bp(ĉ) > p is

(1−F (ĉ))N̂−1(bp(ĉ)− c). Since bidding bp(c) > p is optimal, the first-order conditions imply

that bp solves

b′p(c) =
f(c)

1− F (c)
(N̂ − 1)(bp(c)− c),

with boundary condition bp(c) = c. Note that bidding function bAI solves the same differ-

ential equation with the same boundary condition, and so bp(c) = bAI(c) for all c such that

bp(c) > p.

Consider the case in which p < bAI(c), and suppose that there exists a symmetric equilib-

rium bp 6= bAI . By the previous paragraph, bp(c) = bAI(c) for all c such that bp(c) > p. There-

fore, if bp 6= bAI is an equilibrium, there must exist c̃ > c such that bp(c) = p for all c < c̃, and

bp(c) = bAI(c) for all c ≥ c̃. For this to be an equilibrium, a bidder with cost c̃ must be indif-

ferent between bidding bA(c̃) or bidding p: P (c̃)(p− c̃) = (1−F (c̃))N̂−1(bAIp (c̃)− c̃). But this

can never happen when p < bAI(c) since P (c)(p−c) = p−c < bAIp (c)−c, and for all c ∈ [c, p],

∂
∂c
P (c)(p−c) = −P (c)+P ′(c)(p−c) ≤ −P (c) < −(1−F (c))N̂−1 = ∂

∂c
(1−F (c))N̂−1(bAI(c)−c).

Therefore, in this case the unique symmetric equilibrium is bAI .

20This condition holds for the case in which r ≥ c. If r < c, then bp must be such that bp(r) = r.
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Consider next the case with p > bAI(c). By the arguments above, any symmetric equi-

librium bp must be such that bp(c) = bAI(c) for all c with bp(c) > p. Therefore, in any

symmetric equilibrium, there exists c̃ > c such that bp(c) = p for all c < c̃, and bp(c) = bAI(c)

for all c ≥ c̃. Moreover, c̃ satisfies P (c̃)(p− c̃) = (1−F (c̃))N̂−1(bAIp (c̃)− c̃). When p > bAI(c),

there exists a unique such c̃ (see footnote 19). Therefore, in this case the unique symmetric

equilibrium is bAIp . �

Proof of Corollary 2. Suppose first that p ≤ bAI(c). Then, prob(βAIp > q|βAIp > p) =

prob(βAI0 > q|βAI0 > p) for all q > p.

Consider next the case in which p > bAI(c). For all b ∈ [bAI(c), bAI(c)], let c(b) be such

that bAI(c(b)) = b. Since ĉ is such that bAI(ĉ) > p, it follows that ĉ > c(p). Note then that, for

all q ≥ bAI(ĉ), prob(βAIp > q|βAIp > p) = (1−F (c(q)))N̂

(1−F (ĉ))N̂
> (1−F (c(q)))N̂

(1−F (c(p)))N̂
= prob(βAI0 > q|βAI0 > p).

For q ∈ (p, bAI(ĉ)), prob(βAIp > q|βAIp > p) = 1 > (1−F (c(q)))N̂

(1−F (c(p)))N̂
= prob(βAI0 > q|βAI0 > p). �

B.3 Additional results and Proofs for Section 4

B.3.1 Collusion under threat of entry

This appendix analyzes the model with entry in Section 4. We let N̂e denote the set of all

participants in the auction; i.e., N̂e = N̂ when E = 0, and N̂e = N̂ ∪ {e} when E = 1.

Given a history ht and an equilibrium σ, we let β(c|ht, σ) be the bidding profile of cartel

members and short-lived firm induced by σ at history ht as a function of realized entry cost

k and procurement costs c = (ci)i∈N̂e
.21 Our first result generalizes Lemma 1 to the current

setting.

Lemma B.2 (stationarity – entry). Consider a subgame perfect equilibrium σ that attains

V p. Equilibrium σ delivers surplus V (σ, ht) = V p after all on-path histories ht.

21Since the vector of costs c includes the cost of the short-lived firm in case of entry, the cartel’s bidding
profile can be different depending on whether the short-lived firm enters the auction or not.
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There exists a fixed bidding profile β∗ such that, in a Pareto efficient equilibrium, firms

bid β(ct|ht, σ) = β∗(ct) after all on-path histories ht.

Given a bidding profile (β, γ), we let βW (c) be the winning bid and x(c) = (xi(c))i∈N̂e

be the induced allocation when realized costs are c = (ci)i∈N̂e
. As in Section 2, for all i ∈ N̂e

we let

ρi(β
W , γ,x)(c) ≡ 1βW (c)>p +

1βW (c)=p∑
j∈N̂e\{i}:xj(c)>0 γj(c) + 1

.

Lemma B.3 (enforceable bidding – entry). A winning bid profile βW (c) and an allocation

x(c) are sustainable in SPE if and only if, for E ∈ {0, 1} and for all c,

∑
i∈N̂

{(ρi(βW , γ,x)(c)− xi(c))[βW (c)− ci]+ + xi(c)[βW (c)− ci]−} ≤ δ(V p − nV p). (14)

E × {(ρe(βW , γ,x)(c)− xe(c))[βW (c)− ce]+ + xe(c)[βW (c)− ce]−} ≤ 0. (15)

Recall that

b∗p(c) = sup

b ≤ r :
∑
i∈N̂

(1− x∗i (c)) [b− ci]+ ≤ δ(V p − nV p)

 .

Proposition B.1. In an optimal equilibrium, the on-path bidding profile is such that:

(i) if E = 0, the cartel sets winning bid β∗p(c) = max{b∗p(c), p};

(ii) if E = 1, the winning bid is β∗p(c) = max{p,min{ce, b∗p(c)}} when a cartel wins the

auction, and is β∗p(c) = max{c(e), p} when the entrant wins the auction.

Proposition B.1 characterizes bidding behavior under an optimal equilibrium. In periods

in which the short-lived firm does not participate, the cartel’s bidding behavior is the same

as in Section 2. Entry by a short-lived firm reduces the cartels profits in two ways: (i) the

cartel losses the auction whenever the entrant’s procurement cost is low enough, and (ii)

entry leads to weakly lower winning bids when the cartel wins the auction.
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By Proposition B.1, the winning bid when the entrant wins the auction is β∗p(c) =

max{c(e), p}. For p ≤ c, the entrant earns zero payoff from participating in the auction.

Therefore, for p ≤ c the entrant participates in the auction if and only if its entry cost is

equal to zero.22 For p > c, the entrant’s payoff from participating in the auction is strictly

positive. From now on we assume that the distribution of entry costs Fk has a mass point

at zero, so that there is positive probability of entry for all minimum prices p.

Our last result in this section extends Lemma 3 to the current setting. Recall that β∗0(c)

is the lowest bid under minimum price p = 0.

Lemma B.4 (worse case punishment – entry). (i) V 0 = 0, and V p > 0 whenever p > c;

(ii) there exists η > 0 such that, for all p ∈ [β∗0(c), β∗0(c) + η], V p − nV p ≤ V 0 − nV 0. The
inequality is strict if p ∈ (β∗0(c), β∗0(c) + η].

B.3.2 Proofs for Section 4 and Appendix B.3.1

Fix an SPE σ and a history ht, and suppose that the entry decision of the short-lived

firm at time t is E. For each c, let β(c), γ(c) and T (c,b, γ,x) be the bidding profile

of cartel members and short-lived firm and the transfer profile of cartel members in this

equilibrium after history ht t (E, c). For each c, let βW (c) and x(c) be winning bid and the

allocation induced by bidding profile (β(c), γ(c)). For each ht+1 = ht t (E, c,b, γ,x,T), let

{V (ht+1)}i∈N be the vector of continuation payoffs of cartel members after history ht+1. We

let ht+1(c) = htt (E, c, β(c), γ(c),x(c),T(E, c, β(c), γ(c),x(c))) denote the on-path history

that follows ht t (E, c). With this notation, the inequalities (11)-(13) must also hold in this

setting. Moreover, if E = 1, it must also be that

xe(c)[βW (c)− ce]+ ≥ ρe(β
W , γ,x)(c)[βW (c)− ce]+ and xe(c)[βW (c)− ce]− ≤ 0. (16)

Conversely, suppose there exists a winning bid profile βW (c), an allocation x(c), a transfer

22We assume that the short-lived firm participates in the auction whenever its indifferent.
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profile T and equilibrium continuation payoffs {Vi(ht+1(c)}i∈N that satisfy inequalities (11)-

(13) and (16) if E = 1. Then, (βW ,x,T) can be supported in an SPE as follows. For all c,

all firms i ∈ N̂e bid βW (c). Firms i ∈ N̂e with xi(c) = 0 choose γi(c) = 0 and firms i ∈ N̂e

with xi(c) > 0 choose γi(c) such that xi(c) = γi(c)/
∑

j γj. If no firm i ∈ N̂ deviates at

the bidding stage, cartel members make transfers Ti(c, β(c), γ(c),x(c)). If no firm i ∈ N

deviates at the transfer stage, in the next period cartel members play an SPE that gives

payoff vector {V (ht+1(c))}i∈N . If firm i ∈ N̂ deviates at the bidding stage, there are no

transfers and the cartel reverts to an equilibrium that gives firm i a payoff of V p; if firm

i ∈ N deviates at the transfer stage, the cartel reverts to an equilibrium that gives firm i a

payoff of V p (deviations by more than one firm go unpunished). Since (11) holds, under this

strategy profile no firm i ∈ N̂ has an incentive to undercut the winning bid βW (c). Since

(12) holds, no firm i ∈ N̂ with ci > βW (c) and xi(c) > 0 has an incentive to bid above

βW (c) and lose. Upward deviations by a firm i ∈ N̂e with ci < βW (c) who bids βW (c) are

not profitable since the firm would lose the auction by bidding b > βW (c). Since (16) holds,

the short-lived firm does not have an incentive to deviate when E = 1. Finally, since (13)

holds, all firms i ∈ N have an incentive to make their required transfers.

Proof of Lemma B.2. The proof is identical to the proof of Lemma 1, and hence omitted.

�

Proof of Lemma B.3. The proof that (14) must hold in any equilibrium uses the exact

same arguments used in the proof of Lemma 2, and hence we omit it. Since (16) must hold

for E = 1, it follows that

E × {(ρe(βW , γ,x)(c)− xe(c))[βW (c)− ce]+ + xe(c)[βW (c)− ce]−} ≤ 0.

Next, consider a winning bid profile βW (c) and an allocation x(c) that satisfy (14) and

(15) for all c. We now construct an SPE that supports βW (c) and x(c) in the first period.
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Let {Vi}i∈N be an equilibrium payoff vector with
∑

i Vi = V p. For each c = (ci)i∈N̂e
and

i ∈ N , we construct transfers Ti(c) as follows:

Ti(c) =


−δ(Vi − V p) + (ρi(β

W , γ,x)(c)− xi(c))(βW (c)− ci) + ε(c) if i ∈ N̂ , ci ≤ βW (c),

−δ(Vi − V p)− xi(c)(βW (c)− ci) + ε(c) if i ∈ N̂ , ci > βW (c),

−δ(Vi − V p) + ε(c) if i /∈ N̂ ,

where ε(c) ≥ 0 is a constant to be determined below. Since βW (c) and x(c) satisfy (14), it

follows that for all c,

∑
i∈N

Ti(c)− nε(c)

=− δ(V p − nV p) +
∑
i∈N̂

{
(ρi(β

W , γ,x)(c)− xi)
[
βW (c)− ci

]+
+ xi

[
βW (c)− ci

]−} ≤ 0.

We set ε(c) ≥ 0 such that transfers are budget balance; i.e., such that
∑

i∈N Ti(c) = 0.

The SPE we construct is as follows. At t = 0, for each c = (ci)i∈N̂e
all firms i ∈ N̂e bid

βW (c). Firms i ∈ N̂e with xi(c) = 0 choose γi(c) = 0, and firms i ∈ N̂e with xi(c) > 0

choose γi(c) > 0 such that xi(c) = γi(c)/
∑

j γj(c). If no firm i ∈ N̂ deviates at the bidding

stage, cartel members exchange transfers Ti(c). If no firm i ∈ N deviates at the transfer

stage, from t = 1 onwards firms play an SPE that supports payoff vector {Vi}. If firm i ∈ N

deviates either at the bidding stage or at the transfer stage, from t = 1 onwards firms play

an SPE that gives firm i a payoff V p (if more than one firm deviates, then firms punish

the lowest indexed firm that deviated). One can check that this strategy profile satisfies

(11)-(13) and (16). Hence, winning bid profile βW and allocation x are implementable. �

Proof of Proposition B.1. The proof of part (i) is identical to the proof of Proposition

1, and hence omitted.

We now turn to part (ii). Note first that, by Lemma B.3, entry by the short-lived firm
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reduces the set of sustainable bidding profiles and thus the profits that the cartel can obtain

in an auction. Therefore, in an optimal equilibrium the cartel seeks to maximize its payoff

and minimize the short-lived firm’s payoff from entry.

Suppose E = 1. For any c, let βW (c) and x(c) be, respectively, the winning bid and

allocation in an optimal equilibrium. We let c(1) = mini∈N̂ ci be the lowest cost among

participating cartel members. Consider first cost realizations c such that c(1) > ce ≥ p. In

this case, xe(c) = 1 in an optimal bidding profile. Indeed, by equation (15), βW (c) ≤ ce if

xe(c) < 1. Hence, the cartel is better-off letting the short-lived firm win whenever c(1) >

ce ≥ p. Moreover, by setting βW (c) = ce, the cartel guarantees that the short-lived firm

earns zero payoff.23

Consider next c such that c(1) > p > ce. By (15), it must be that xe(c) > 0. In this case,

in an optimal equilibrium the cartel sets winning bid equal to βW (c) = p, as this minimizes

the short-lived firm’s payoff from winning.

Consider next c such that c(1) < ce and ce ≥ p. Clearly, an optimal bidding profile for the

cartel must be such that xe(c) = 0. Equation (15) then implies that βW (c) ≤ ce. We now

show that, in this case, βW (c) = max{p,min{ce, b∗p(c)}}. There are two cases to consider:

(a) b∗p(c) > ce, and (b) b∗p(c) ≤ ce. Consider case (a), so b∗p(c) > ce ≥ p. It follows that

∑
i∈N̂

(1− x∗i (c))[ce − ci]+ <
∑
i∈N̂

(1− x∗i (c))[b∗p(c)− ci]+ ≤ δ(V p − nV p).

Therefore, a bidding profile that induces winning bid ce and allocation x∗(c) satisfies (14)

and (15). Since such a bidding profile is optimal for the cartel among all bidding profiles

with winning bid lower than ce, it must be that βW (c) = ce.

23This is achieved by having all participating cartel members bidding βW (c) and γi(c) = 0, and having
the entrant bidding βW (c) and γe(c) = 1.
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Consider next case (b). Note that for all b > max{b∗p(c), p} and any allocation x(c),

∑
i∈N̂

{
(1− xi(c))[b− ci]+ + xi(c)[b− ci]−

}
≥
∑
i∈N̂

(1− x∗i (c))[b− ci]+ > δ(V p − nV p),

so max{b∗p(c), p} is the largest winning bid that can be supported in an equilibrium. There-

fore, in an optimal equilibrium cartel members must use a bidding profile inducing winning

bid max{b∗p(c), p}.

Finally, consider c such that c(1) < p and ce < p. We now show that, in an optimal equi-

librium, βW (c) = p. Indeed, by (15), a winning βW (c) > p > ce can only be implemented

if xe(c) = 1. But this is clearly suboptimal for the cartel. Indeed, the cartel could make

strictly positive profits by having a firm with cost c(1) bidding p; and doing this would also

strictly reduce the short-lived firm’s expected payoff from entering. Therefore, in an optimal

equilibrium it must be that βW (c) = p. �

Proof of Lemma B.4. We first establish part (i). Suppose that p ≤ c and fix equilibrium

payoffs {Vi}i∈N . Fix j ∈ N and consider the following strategy profile. At t = 0, firms’

behavior depends on whether j ∈ N̂ or j /∈ N̂ . If j ∈ N̂ , all firms i ∈ N̂e bid min{cj, ĉ(2)}

(where ĉ(2) is the second lowest procurement cost among firms in N̂e). Firm i ∈ N̂e\{j}

with cost ci < min{cj, ĉ(2)} chooses γi = 1, and firm i ∈ N̂e\{j} with cost ci ≥ min{cj, ĉ(2)}

chooses γi = 0; firm j chooses γj = 1 if cj < ci for all i 6= j, and chooses γj = 0 otherwise.

Note that this bidding profile constitutes an equilibrium of the stage game. If j /∈ N̂ , at

t = 0 participating firms play according to some equilibrium of the stage game. If all firms

bid according to this profile, firm j’s transfer is Tj = −δVj at the end of the period regardless

of whether j ∈ N̂ or j /∈ N̂ . The transfer of firm i ∈ N\{j} is Ti = 1
n−1

δVj at the end of

the period, so
∑

i Ti = 0. If no firm deviates at the bidding or transfer stage, at t = 1 firms

play according to an equilibrium that delivers payoffs {Vi}. If firm i deviates at the bidding

stage, there are no transfers and at t = 1 firms play the strategy just described with i in
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place of j. If no firm deviates at the bidding stage and firm i deviates at the transfer stage,

at t = 1 firms play the strategy just described with i in place of j (if more than one firm

deviates at the bidding or transfer stage, from t = 1 firms play according to an equilibrium

that delivers payoffs {Vi}i∈N). Note that this strategy profile gives player j a payoff of 0.

Moreover, no firm has an incentive to deviate at t = 0, and so V p = 0 for all p ≤ c.

Suppose next that p > c, and note that

V p ≥ up ≡
1

1− δ
E
[

1

N̂ + 1
1ci≤p(p− ci)

]
> 0,

where the inequality follows since firm i can always guarantee a payoff at least as large as

up by bidding p whenever ci ≤ p and bidding b ≥ ci otherwise. This establishes part (i).

We now turn to part (ii). Note that β∗0(c) = c.24 Fix η > 0 and p ∈ [c, c+η]. For E = 0, 1,

let (βE, γE) be the bidding profile that firms use on the equilibrium path at periods in which

the short-lived firm’s entry decision is E under an optimal equilibrium that attains V p when

the minimum price is p. Let β∗p(c) and xp(c) denote, respectively, the winning bid and the

allocation under this optimal equilibrium. The cartel’s expected payoff under this optimal

equilibrium satisfies

(1− δ)V p =prob(E = 0|p)E

∑
i∈N̂

xpi (c)(β∗p(c)− ci) |E = 0


+ prob(E = 1|p)E

∑
i∈N̂

xpi (c)(β∗p(c)− ci) |E = 1

 .
Suppose there is no minimum price and consider the following bidding profile for cartel

members. For E = 0, 1 and all c such that β∗p(c) > p, participating firms bid according to

(βE, γE). For E = 0 and all c such that β∗p(c) = p, all participating cartel members bid

c(2); firm i ∈ N̂ with ci = c(1) = minj∈N̂ cj sets γi = 1, and firm i ∈ N̂ with ci > c(1) sets

24Indeed, by Proposition B.1, β∗0(c) = c whenever E = 1 and ce = c.
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γi = 0. For E = 1 and all c such that β∗p(c) = p, all participating firms bid min{c(2), ce};

firm i ∈ N̂ sets γi = 1 if ci < min{c(2), ce} and sets γi = 0 otherwise; the short-lived firm

sets γe = 1 if ce < ci for all i ∈ N̂ and sets γe = 0 otherwise. Note that, for c such that

β∗p(c) = p, the bidding profile that firms use constitutes an equilibrium of the stage game

when there is no minimum price. Note further that the entrant earns a lower expected

payoff under this bidding profile than under the optimal equilibrium for minimum price

p ∈ [c, c + η]; indeed, under this bidding profile, the entrant earns the same payoff than

under the optimal equilibrium whenever β∗p(c) > p, and earns a payoff of zero whenever

β∗p(c) = p. Therefore, the probability of entry under this strategy profile is lower than under

the optimal equilibrium when minimum price is p. Let β(c) and x(c) denote the winning

bid and the allocation that this bidding profile induces. Let V̂p be the cartel’s total surplus

under this strategy profile, and note that

(1− δ)V̂p =prob(E = 0|no min price)E

∑
i∈N̂

xi(c)(β(c)− ci) |E = 0


+ prob(E = 1|no min price)E

∑
i∈N̂

xi(c)(β(c)− ci) |E = 1


≥prob(E = 0|p)E

∑
i∈N̂

xpi (c)(β∗p(c)− ci)1β∗
p(c)>p |E = 0


+ prob(E = 1|p)E

∑
i∈N̂

xpi (c)(β∗p(c)− ci)1β∗
p(c)>p |E = 1

 ,
where we used the fact that the prob(E = 0|p) ≤ prob(E = 0|no min price) and that the

cartel’s payoff conditional on E = 0 is weakly larger than its payoff conditional on E = 1.

Note that b∗p(c) ≥ c +
δ(V p−nV p)

n−1
> c.25 By Proposition B.1, β∗p(c) = max{p, b∗p(c)}

whenever E = 0. Therefore, for η > 0 small enough and for E = 0, β∗p(c) > p for all c

25Indeed, infc b
∗
p(c) is attained when all cartel members participate and they all have a cost equal to c.

In this case, b∗p(c) = c+
δ(V p−nV p)

n−1 .
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and all p ∈ [c, c + η]. For all such η > 0 and for all p ∈ [c, c + η], prob(β∗p(c) = p|E =

0) = 0. Moreover, Proposition B.1 also implies that prob(β∗p(c) = p|E = 1) = Fe(p) for all

p ∈ [c, c+ η].26 Therefore, for η > 0 small enough and for p ∈ [c, c+ η],

(1− δ)(V p − V̂p) ≤prob(E = 1|p)E

∑
i∈N̂

xpi (c)(β∗p(c)− ci)1β∗
p(c)=p |E = 1


≤prob(E = 1|p) n

n+ 1
Fe(p)E[(p− c(1))1c(1)≤p]

≤prob(E = 1|p) n

n+ 1
Fe(p)

∫ p

c

(p− c)n(1− F (c))n−1f(c)dc

where the second inequality follows since the probability with which the cartel wins the

auction when the entrant’s cost is below p is bounded above by n
n+1

, and since the cartel’s

payoff from winning the auction at price p is bounded above by (p − c(1))1c(1)≤p. On the

other hand,

(1− δ)nV p ≥ (1− δ)nup ≥
n

n+ 1
E[(p− ci)1ci≤p] =

n

n+ 1

∫ p

c

(p− c)f(c)dc.

Note that (V p − V̂p) ≤ 0 for p = c, and that

∂

∂p
∣∣
p=c

Fe(p)

∫ p

c

(p− c)n(1− F (c))n−1f(c)dc = 0

∂2

∂p2 ∣∣
p=c

Fe(p)

∫ p

c

(p− c)n(1− F (c))n−1f(c)dc = 0

∂

∂p
∣∣
p=c

∫ p

c

(p− c)f(c)dc = 0

∂2

∂p2 ∣∣
p=c

∫ p

c

(p− c)f(c)dc = f(c) > 0.

Therefore, there exists η > 0 small enough such that V̂p ≥ V p−nV p for all p ∈ [c, c+η], with

26Since b∗p(c) > p for all c and all p ∈ [c, c+ η], when E = 1 the winning bid β∗p(c) is equal to p only when
the entrant’s cost is below p.
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strict inequality if p > c. To establish the result, we show that V 0 ≥ V̂p for all p ∈ [c, c+ η].

Fix p ∈ [c, c + η] and consider the following strategy profile. Along the equilibrium

path, bidders bid according to the bidding profile described above. If firm i ∈ N̂ deviates

at the bidding stage, there are no transfers and in the next period cartel members play

an equilibrium that gives firm i a payoff of V 0 = 0 (if more than one firm deviates, cartel

members punish the lowest indexed firm that deviated). If no firm deviates at the bidding

stage, each firm i ∈ N makes transfer Ti(c) to be determined below. If a firm i ∈ N deviates

at the transfer stage, in the next period firms play an equilibrium that gives firm i a payoff

of V 0 = 0 (if more than one firm deviates, cartel members again punish the lowest indexed

firm that deviated). Otherwise, if no firm deviates at the bidding and transfer stages, in the

next period firms continue playing the same strategies as above.

Let V = V̂p/n. The transfers Ti(c) are determined as follows. For all c such that

β∗p(c) = p, Ti(c) = 0 for all i ∈ N . Otherwise,

Ti(c) =

 −δV + (1− xpi (c))(β∗p(c)− ci) + ε(c) if i ∈ N̂ , ci ≤ β∗p(c),

−δV + ε(c) otherwise,

where ε(c) ≥ 0 is a constant to be determined. Note that

∑
i

Ti(c)− nε(c) = −δV̂p +
∑
i

(1− xpi (c))[β∗p(c)− ci]+ ≤ 0,

where the inequality follows since β∗p(c) is implementable with minimum price p, and since

V̂p ≥ V p − nV p. We set ε(c) ≥ 0 such that
∑

i Ti(c) = 0. This strategy profile gener-

ates total surplus V̂p for the cartel. Since firms play symmetric strategies, it gives a payoff

V = V̂p
n

to each cartel member. One can check that no firm has an incentive to devi-

ate at any stage, and so this strategy profile constitutes an equilibrium. Hence, it must be

that V 0 ≥ V̂p ≥ V p−nV p for all p ∈ [c, c+η], and the second inequality is strict if p > c. �
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Proof of Proposition 4. Consider first a collusive environment and suppose that E ∈

{0, 1}. By Proposition B.1 and Lemma B.4, for all p ∈ [β∗0(c), β∗0(c) + η], β∗p(c) ≤ β∗0(c)

for all c such that β∗0(c) ≥ p. Therefore, for all p ∈ [β∗0(c), β∗0(c) + η] and all q > p,

prob(β∗p > q|β∗p ≥ p, E) ≤ prob(β∗0 > q|β∗0 ≥ p, E). This completes the proof of part (i).

Consider next a competitive environment. Let ĉ(2) be the second lowest cost among all

participating firms (including the entrant if E = 1). Then, for all p > 0 and all q > p,

prob(βcomp
p > q|βcomp

p > p,E) = prob(ĉ(2) > q|ĉ(2) > p,E) = prob(βcomp
0 > q|βcomp

0 > p,E).

This completes the proof of part (ii). �

Proof of Proposition 5. Consider first cost realizations c such that the cartel wins.

If E = 0, the result follows from Proposition 4. Suppose next that E = 1. By Proposi-

tion B.1 and Lemma B.4, for all p ∈ [β∗0(c), β∗0(c) + η], β∗p(c) ≤ β∗0(c) for all c such that

β∗0(c) ≥ p. Therefore, for all p ∈ [β∗0(c), β∗0(c) + η] and all q > p, prob(β∗p > q|β∗p ≥ p, E =

1, cartel wins) ≤ prob(β∗0 > q|β∗0 ≥ p, E = 1, cartel wins). This completes the proof of part

(i).

Consider next cost realizations c such that the entrant wins. By Proposition B.1,

β∗0(c) = c(e) and β∗p(c) = max{c(e), p}. Therefore, for all p > 0 and all q > p, prob(β∗p >

q|β∗p > p, entrant wins) = prob(β∗0 > q|β∗0 > p, entrant wins). This completes the proof of

part (ii). �
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