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Abstract

How has the microcredit movement managed to push financial frontiers? If bor-
rowers vary in unobservable risk, then group-based, joint liability contracts price for
risk more accurately than individual contracts, provided that borrowers match pos-
itively assortatively by project riskiness (Ghatak, 1999, 2000). This more accurate
risk-pricing can attract safer borrowers and rouse an otherwise dormant credit market.
We extend the theory to include correlated risk, and show that borrowers will seek
to undo joint liability by matching to anti-diversify risk within groups. We test for
positive assortative matching by project riskiness, and for intra-group diversification
of risk, using data on Thai microcredit borrowing groups. We propose a new non-
parametric methodology to test for homogeneous and positive assortative matching
in a single dimension. Multidimensional matching analysis is also carried out using
Fox’s (2010a) matching maximum score estimator. Evidence is found for a) positive
assortative matching by project riskiness and b) risk anti-diversification within groups,
though not along occupational lines. This evidence supports the idea that group lend-
ing improves risk-pricing by embedding a discount for safe borrowers, and thus can
plausibly explain part of the unprecedented rise in financial intermediation among the
world’s poor. However, the anti-diversification results point to a potential pitfall of
voluntary group formation, and suggest strategies for lender intervention.
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1 Introduction

Recent impact studies have called into question the “miracle” of microcredit – i.e. transfor-

mative impacts of new formal credit access on well-being of poor households.1 The question

is not fully settled,2 however, and there remains a strong prima facie case for some degree of

net positive impacts from microcredit: the apparently large number of microcredit institu-

tions lending sustainably to poor borrowers without needing subsidies3 suggests that gains

from trade are being realized.

Whatever microcredit’s net impact may be, there is little doubt about how widespread it

is and how rapidly it has grown in recent years. Maes and Reed (2012) report that over two

hundred million people have borrowed from nearly four thousand microfinance institutions

throughout the world. Forty years ago, any prediction of this development would likely have

been greeted with skepticism. As the 2006 Nobel Peace Prize Press Release puts it, “Loans

to poor people without any financial security had appeared to be an impossible idea.”4 This

unprecedented expansion of microcredit gives rise to the following puzzle: how has this

growth in intermediation and financial services among the world’s poor been possible? How

have lenders managed to overcome the obstacles involved in lending to borrowers without

using collateral?

The current paper is focused on this “mystery” of microcredit.5 Specifically, it explores

one candidate answer based on group lending and borrower matching, due to Ghatak (1999,

2000). The context is a standard adverse selection environment in which there is limited

1See discussion in Banerjee et al. (2015), and the studies cited there.
2Some studies do find significant immediate impacts, e.g. Kaboski and Townsend (2011, 2012). Also, the

studies cited can reject large impacts on the average villager, but typically cannot rule out large impacts
on villagers who actually borrow (Banerjee et al., 2015). Thus the cost-benefit question remains unsettled,
since the main costs are incurred on actual borrowers. Finally, longer-run impacts may be more dramatic,
but remain largely unmeasured. Ahlin and Jiang (2008) explore the issue of long-run impact theoretically.

3For example, see Cull et al. (2009).
4This Prize was given to Muhammad Yunus and the Grameen Bank for pioneering efforts in microcredit.
5This paper is not the first to do so. A growing literature has explored innovative practices and contract

forms associated with the microcredit movement that may underpin its unprecedented success in lending
among the poor. See Armendariz and Morduch (2010), Ghatak and Guinnane (1999), and Morduch (1999)
for introductions to the topic, and the next section for more elaboration.
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liability and no collateral, and borrowers’ projects have identical expected values but different

degrees of risk. In this environment, a lender that cannot observe project risk offers all

borrowers the same terms; its inability to price for risk results in cross-subsidization of

riskier borrowers by safer borrowers and can cause a large portion of the potential market

(safer households) to avoid borrowing. This market breakdown is the key inefficiency: good

projects go unfunded due to the lender’s inability to price for risk.

Ghatak adds to this context local information – borrowers know each other’s risk, though

the lender does not – and shows that group-based, joint liability lending contracts can harness

this local information to improve the lender’s ability to price for risk. The idea is as follows.

First, given joint liability, borrowers match positively assortatively by riskiness. Second,

given positive assortative matching (“PAM”), the lender can use joint liability contracts to

screen or pool borrowers to increase efficiency. Consider the pooling case.6 Even though

contract terms are the same for all borrowers, an implicit discount is built in for safer

borrowers: they have safer partners, due to PAM, and thus when they succeed the joint

liability clause is less costly for them. That is, joint liability plus PAM helps to equalize the

repayment burden across borrowers.7 This can draw into the market safer borrowers who

would have been inefficiently excluded under standard, individual loans.

The beauty of this result is that the lender is improving risk-pricing – and with it the

efficiency and size of the market – by offering all borrowers the same contract, without

learning their riskiness. This is appealing in practical terms. It implies that even a very

passive or unsophisticated lender that offers a single, standardized group contract is giving

implicit discounts to safe borrowers, and hence more accurately pricing for risk than if it used

individual contracts. Thus, this is a theory that can help explain the popularity of group

lending in microcredit – lenders that use it may be reversing partial market breakdown – as

6Ahlin (2015b) shows that pooling works just as well as screening in this context, i.e. a single contract
can achieve the same efficiency as any menu. What matters is not the lender’s ability to screen borrowers,
but its ability to improve risk-pricing through joint liability, with or without screening.

7Optimal joint liability plus PAM plus asymptotically large groups fully equalizes the repayment burden
across borrowers, as long as project returns allow for affordability of typical bailout scenarios (Ahlin, 2015b).
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well as the growth of credit markets among the poor as this contract form is discovered and

diffused.

The lynchpin in this theory is that matching into microcredit borrowing groups is positive

assortative by project risk; this is what provides the implicit discounts for safe borrowers.8 To

our knowledge, however, matching patterns of microcredit groups have yet to be empirically

tested.9 A main contribution of the current paper is to test directly for PAM by project risk

among microcredit groups in Thailand.

The paper also extends the theory on matching for credit to consider correlated risk,

asking whether borrowers will match with other borrowers exposed to similar, or different,

risks. The result derived is that groups match homogeneously in both dimensions: they

match with borrowers of similar riskiness (PAM), and among those, with partners exposed

to the same type of risk. The intuition for the latter result is straightforward: groups anti-

diversify in order to avoid facing liability for their partners. This points to a potentially

negative consequence of voluntary group formation, since anti-diversification can limit the

effectiveness of joint liability as a contracting tool.

To test empirically whether groups are homogeneous in both riskiness and type of risk

exposure, the Townsend Thai dataset is used. It includes information on borrowing groups

from the Bank for Agriculture and Agricultural Cooperatives (BAAC). The BAAC is the

predominant rural lender in Thailand. It offers joint liability contracts to self-formed groups

of borrowers with little or no collateral. Importantly, this unique dataset includes multiple

groups from each of a number of villages – taking the village as the matching market, this

allows matching patterns to be tested using a number of independent matching markets.

To assess homogeneity of matching along one dimension, we develop a new approach. For

each village and variable, a variance decomposition, rank correlation, and/or chi-squared test

8Random matching makes group lending no better than individual lending in this context (Ahlin, 2015b).
9The literature has recognized this as an important open question. For example, it is first on the mi-

crofinance mechanisms empirical research agenda Morduch (1999, p. 1586) lays out: “Is there evidence of
assortative matching through group lending as postulated by Ghatak (1999)?” See next section for comple-
mentary and related work.
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statistic is calculated to measure how homogeneously matched groups within the village are.

These calculations are then scaled using a permutation test. Specifically, the result from

the observed grouping is mapped into a village homogeneity percentile reflecting how homo-

geneous the village’s observed grouping is relative to all possible groupings of the sampled

village borrowers into groups of the observed sizes.

For any given variable, villages can be found at both ends of the spectrum, characterized

by high and low homogeneity percentiles. Means and medians of the village homogeneity

percentiles suggest predominant tendencies. We show that if matching is random with respect

to the variable in question, then village homogeneity percentiles are drawn from a uniform

distribution. Thus we can statistically compare the matching patterns observed in the data to

random matching by comparing the distribution of observed village homogeneity percentiles

to the uniform distribution. In short, this technique combines homogeneity metrics and

permutation techniques at the village level with a statistical test against the benchmark

uniform distribution across villages.

We find direct evidence for within-group homogeneity in project riskiness. That is, though

far from maximally homogeneous matching (PAM), the data can reject random matching

in the direction of homogeneity. We also find some evidence for anti-diversification within

groups. While random matching based on agricultural occupation cannot be rejected, groups

are mildly anti-diversified in terms of clustering of bad income years.

These results are extended in two ways. First, it has been shown that when groups

have more than two members, homogeneous matching and PAM may no longer coincide

(Ahlin, 2015a). Groups may appear more homogeneous than random by some metrics, but

still be matching negatively assortatively. So, we replace the homogeneity metrics with a

complementarity metric derived directly from the theoretical group payoff function, which

induces PAM because it exhibits complementarity. This approach is more structural in taking

a stance on functional form of the group payoff function, but it allows cleaner dentification

of complementarity vs. substitutability (along the lines of Fox, 2010b). Combined with the
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permutation test described above, the complementarity metric can be transformed into a

village complementarity percentile; comparison of village complementarity percentiles with

the uniform distribution then shows whether observed matching patterns are dictated by a

payoff function that features complementarity or substitutability, and hence induces PAM

or NAM. Second, we carry out multidimensional matching analysis to check whether both

dimensions of matching modeled here appear important for matching patterns. Fox’s (2010a)

matching maximum score estimator is used; it chooses parameter values that maximize

the frequency with which observed groupings yield higher payoffs than feasible, unobserved

groupings. The results of both extensions are supportive of earlier conclusions.

In sum, Ghatak’s theory receives support from the data: within-group homogeneity of

project risk is significantly greater than random matching would predict. Evidently, group

lending is successfully embedding a non-negligible discount for safe borrowers because their

equilibrium partners are safer; and this can partly explain how microcredit has successfully

awakened previously dormant credit markets. However, results on anti-diversification caution

of a potentially negative aspect of voluntary group formation, and suggest that lenders may

benefit from increasing the incentives to match for diversification, if this can be done cleanly.

The paper does not decisively establish causal determinants of group formation. How-

ever, we argue that to assess whether group lending enables better risk-pricing by targeting

discounts to safe borrowers, this is not necessary (section 5.3). Whether risk-homogeneity

results from purposeful matching or as a byproduct of other constraints or objectives, it is by

itself sufficient for the improvement in risk-pricing that enables group lending to revitalize

markets.

In what follows, related literature is discussed in Section 2. The model setup and theoret-

ical matching results are in Section 3. Data are described and variables defined in Section 4.

Section 5 presents the methodology behind the nonparametric univariate tests (section 5.1),

as well as the results (section 5.2) and a discussion of causality (section 5.3). Section 6

presents the multivariate estimation. Section 7 concludes. Proofs are in the appendix.
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2 Relation to the Literature

This paper contributes to unraveling the “mystery” of microcredit – that is, how and why

lending has exploded in these markets – by highlighting and finding empirical evidence for a

plausible mechanism through which credit markets can be revived. It does not fully resolve

the puzzle. For one, not all successful microlenders use group lending contracts. Also, the

paper focuses on one mechanism, in an adverse selection environment, rather than testing

across multiple mechanisms or environments. However, given that the puzzle’s solution is

likely to be multi-faceted and to be reached in a step-wise manner, this paper makes the

significant contribution of providing empirical backing to one key theory.

A number of other papers also shed light on this puzzle empirically or theoretically.

Among other topics, they examine the innovations that gave rise to microcredit’s expansion,10

the underlying credit market frictions,11 and the types of contracts that work best.12 Relative

to this literature, this paper is the first to focus empirically on matching combined with group

lending as a key mechanism for repairing credit markets, and to offer direct evidence on a

specific mechanism that may help explain this mystery.

The substantive focus of the paper is an empirical assessment of matching patterns in

microcredit groups. To our knowledge this has not been done before, though related and

complementary work exists. Eeckhout and Munshi (2010) study commercial ROSCAs13 in

India and show that changes in group composition and characteristics, in response to new

regulation capping interest rates, are in line with predictions of their matching model. We

differ in focusing on microcredit rather than ROSCAs; ROSCAs tend to group together both

borrowers and lenders, while microcredit groups are predominantly borrowers. We also focus

on characterizing existing matching patterns rather than re-matching in response to changes

10See for example Ghatak and Guinnane (1999), Armendariz and Morduch (2000), and Cull et al. (2009).
11See for example Ahlin and Townsend (2007a, 2007b), who find evidence consistent with the adverse

selection context studied here; and Karlan and Zinman (2009), who do not find strong evidence for adverse
selection, but rather for moral hazard. The current paper studies the same geographic setting as Ahlin and
Townsend (2007a, 2007b), raising our expectation that adverse selection may be an issue.

12See for example Gine and Karlan (2014) and Ahlin and Waters (forthcoming).
13“ROSCA” stands for rotating savings and credit associations.
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in the environment. Although it is not their main focus, Gine et al. (2010) study group

formation in a microcredit-inspired field laboratory game, and find evidence that participants

with similar levels of risk aversion group together. A key difference is that we use data on

practicing microcredit groups; this avoids the concern that a specific lab game may differ

from practiced microcredit in important ways. There is also a literature on matching for

risk-sharing, both in the lab (e.g. Attanasio et al., 2012 and Barr and Genicot, 2008) and

using household data (e.g. Fafchamps and Gubert, 2007). While sharing some features in

common with microcredit group formation, these settings lack key features of credit, so it is

not clear that results are applicable to a microcredit context.14,15

The paper also proposes a new statistical test for homogeneous vs. heterogeneous match-

ing, and matching based on complementarity vs. substitutability. This test applies to

one-sided matching when data on matches in multiple markets is available. It shares in

common with independent work by Fox (2010a) the idea of comparing observed and unob-

served matches in multiple markets, but takes this in a new direction using permutation

testing combined with a result linking the uniform distribution to random matching. Un-

like Fox’s estimator, however, this test is not equipped to estimate matching patterns with

multi-dimensional characteristics. Permutation tests have been used elsewhere in studying

matching, most commonly to conduct inference for OLS regressions with dyadic data.16 For

example, Gine et al. (2010) use permutation techniques from Krackhardt (1987) in the

context of dyadic OLS regressions. However, the dyadic regression approach can give mis-

leading results about the underlying matching pattern (Ahlin, 2015a), and this paper goes

in a different direction.

Finally, the paper contributes to the theory of matching for microcredit by introducing

a second dimension of heterogeneity of borrowers, the type of risk they are exposed to. This

14Indeed, Schulhofer-Wohl (2006) finds equilibrium matching to be negative assortative in his model of
matching to share risk, while the microcredit model of this paper finds positive assortative matching.

15An even more different, but interesting, setting in which matching has been analyzed is in the formation
of Community-Based Organizations – e.g., Arcand and Fafchamps (2012) and Barr et al. (2015).

16An exception is Barr and Genicot (2008), who use permutation techniques of Krackhardt (1987) to
statistically compare two network matrices based on fractions of identical entries.
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is the first multi-dimensional matching analysis we know of in the microcredit context, and

it uncovers a new result: that matching based on type of risk exposure may lead to anti-

diversification, as borrowers form groups so as to undo joint liability. The novel implication

is that voluntary matching need not work in favor of efficiency, at least not in all dimensions.

In sum, this paper advances the theoretical understanding of how microcredit groups

form, and provides a first empirical characterization of matching patterns of existing groups.

It also breaks new ground in analyzing one-sided matching (group formation), going beyond

the dyadic regression techniques common in the literature to develop new techniqes and use

existing ones that can be argued to identify underlying matching patterns more reliably.

3 Theoretical Framework

3.1 Baseline model and results

The model here follows Ghatak (1999, 2000), which builds on work of Stiglitz and Weiss

(1981). Risk-neutral agents are each endowed with no capital and one project. Each project

requires one unit of capital and has expected value R. Agents and their projects differ in

riskiness, indexed by p ∈ P, where P = [p, p] and 0 < p < p < 1. The project of an agent of

type p yields gross returns of Rp (“succeeds”) with probability p and yields gross returns of

0 (“fails”) with probability 1 − p. Thus p · Rp = R, for all p ∈ P. The higher p, the lower

the agent’s riskiness.

An agent’s riskiness is observable to other agents, but not to the outside lender. In this

context, uncollateralized individual loan contracts can be inefficient. They bear an interest

rate based on the average risk in a borrowing pool, a rate at which safer borrowers may find

it unprofitable to borrow.17 Thus, the lending market can (partially) collapse, excluding all

but the riskier borrowers due to a failure to price for risk. Efficiency losses in this context

17For evidence consistent with this behavior in the Thai context, see Ahlin and Townsend (2007b). For
more detailed theoretical analysis see Ahlin (2015b, Section 5).
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result from good projects left unfunded – the safer borrowers’ – and raising efficiency comes

from attracting more borrowers.18

In this context, group lending can increase efficiency by improving risk-pricing, offering

implicit discounts to safer borrowers. A lender requires potential borrowers to form groups

of size two, each member of which is liable for the other. Without loss of generality (Ahlin,

2015b), a single, standardized contract is offered to all borrowers. In the contract, a borrower

who fails pays the lender nothing, since loans are uncollateralized. A borrower who succeeds

pays the lender gross interest rate r > 0. A borrower who succeeds and whose partner fails

makes an additional liability payment c > 0. Thus, a borrower of type pi who matches with

a borrower of type pj has expected payoff

πij = R − rpi − cpi(1− pj), (1)

assuming the borrowers’ returns are uncorrelated.

In order to compare to a standard individual loan contract, where the payoff is R − pir

and the interest rate does not vary by risk-type, one can rewrite the borrower’s payoff under

the group lending contract (equation 1) as

πij = R− pir̃ij,

where

r̃ij ≡ r + c(1− pj). (2)

Here r̃ij is interpretable as the implied interest rate paid by borrower i when successful and

matched with borrower j. Two components make up this implied interest rate: the direct

interest rate r, and the expected bailout payment for the partner, c(1− pj).

Because this second component depends on partner quality (pj), the question of how

18Hence, the term “adverse selection” risks being somewhat misleading here: the goal is to include safe
borrowers, not exclude risky, since all have equally good projects.
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borrowers match becomes critical. Utility is transferable in this context, and side transfers

between borrowers are allowed. Thus, following Ghatak (1999, 2000) and Legros and New-

man (2002), the equilibrium includes a) an assignment of borrowing agents into two-member

borrowing groups or non-borrowing, and b) payoffs of all borrowing agents such that two

co-grouped agents’ equilibrium payoffs sum to their total group payoff and such that no two

agents can earn strictly higher payoffs by grouping together. It is well known that in such

an equilibrium, no two groups can be rearranged to produce a higher sum of group payoffs

– a fact that will be used later.

Note that

∂2(πij + πji)

∂pi∂pj
= 2c > 0. (3)

That is, the group payoff function exhibits complementarity, and groups that are perfectly

homogeneous in riskiness is the stable outcome when there is a continuum of agents, as

Ghatak has shown. The intuition is that having a more reliable (safer) partner is worth

more to safe borrowers, since a borrower is “on the hook” for his partner only if he succeeds.

Note that a borrower with a safer partner (higher pj) has a lower implied interest rate

(equation 2), because his chance of owing a bailout payment when successful is lower. What

homogeneous matching gives is that safer borrowers have safer partners, and thus, lower

implied interest rates. With perfectly homogeneous matching,

r̃ij = r̃ii = r + c(1− pi) and
∂r̃ij
∂pi

=
∂r̃ii
∂pi

= −c < 0 . (4)

Safer borrowers have safer partners, and thus can expect fewer bailout payments when suc-

cessful. Thus, safer borrowers face a lower implied interest rate under joint liability – just as

they would under full information. In this way, group lending harnesses social information

to vary the interest rate implicitly by riskiness, thus improving risk-pricing.

This is true even under an unsophisticated pooling strategy, where the lender simply

offers all comers a standard joint liability contract. Whether the lender knows it or not, if
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matching is homogeneous, the contract embeds discounts for safe borrowers and can draw

more of them into the market. In this sense, unsophisticated group lending can be responsible

for reviving a lending market, underpinning a substantial increase in intermediation.

3.2 Variations on the baseline model

Several plausible variations to the baseline model are discussed here, though doing so formally

is beyond the scope of the paper.

Consider a finite population of borrowers rather than a continuum. Though perfectly

homogeneous matching will generally not be possible, it can be shown that groups will be

rank-ordered by riskiness in any equilibrium.19 That is, the two riskiest borrowers will pair

together, the next two riskiest will pair together, and so on. Given rank-ordered matching,

group lending has qualitatively similar risk-pricing advantages over individual lending: safer

borrowers have generally safer partners, so they face lower implied interest rates. Thus,

the theory does not critically rely on a large number of borrowers or perfectly homogeneous

matching.

Next, consider removing the assumption that borrowers know each other’s riskiness.

If riskiness is uncorrelated with any characteristics that do drive matching, then matching

would be random with respect to riskiness, instead of homogeneous. All borrowers would then

face the same implied interest rate, in expectation, equivalent to matching with a borrower

of average riskiness in the borrowing pool. With no variation in ex ante implied interest rate

across borrowers, group lending would lose its risk-pricing advantage over individual lending

in this context and could not draw additional borrowers into the market.20 But, if borrowers

matched into “homogeneous” groups based on non-risk characteristics that are themselves

predictive of riskiness – e.g. due to proximity or friendship – one would still observe some

19See Proposition 1, Ahlin (2015a).
20See Ahlin and Townsend (2002, section 5.4.7) and Ahlin (2015b, Lemma 3) for more formal analysis.
In a somewhat different context involving costly auditing, Armendariz and Gollier (2000) show how joint

liability can raise efficiency even with random matching. The idea is that risky borrowers pay more under
joint liability if audited when successful, since their projects have higher returns when successful.
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degree of group homogeneity in riskiness.21 Interestingly, group lending would still embed

an implicit discount for safe borrowers, for the reasons discussed. To the extent that groups

formed homogeneously in riskiness, group lending could still be a force for expanding the

lending market.

Next, consider group size. For simplicity, the theory in this paper is for groups of fixed size

two. Ahlin (2015b) generalizes the model to fixed group size larger than two, demonstrating

the improvements to risk-pricing from larger groups and exploring the optimal group size that

results from the tradeoff between improved risk-pricing and information deterioriation. The

same forces are at work – standard joint liability contracts induce homogeneous matching,

which gives safe borrowers implicit discounts in their effective interest rates, and improves

efficiency by drawing them into the market. Thus, with a more general treatment of group

size, it remains homogeneous matching that is critical for the market-reviving effects of group

lending.22

Summarizing so far, within-group homogeneity in riskiness obtains in a number of circum-

stances, allowing group lending to improve risk-pricing and facilitate more efficient lending.

Several authors have made the point that a different form of joint liability can reverse the

matching pattern. Sadoulet (1999) and Guttman (2008) consider dynamic contracts where

liability for one’s partner carries the threat of being denied future loans if both borrowers

fail. In this context, the group payoff function can exhibit substitutability, which means

PAM is no longer an equilibrium. The intuition is that having a more reliable partner is

worth more to riskier borrowers: they more often need their partner to be successful in

order to continue receiving loans.23 Thus, joint liability per se does not necessarily lead to

21One could similarly assume that borrowers do know each others’ riskiness but face custom-based or other
constraints on matching, so that perfect homogeneity is not possible.

22Even if borrowers could choose their own group composition and size, if types are complements and the
payoff function is sum-based (see Ahlin, 2015a), then any two equilibrium groups must still be rank-ordered.
Otherwise, one could rearrange the borrowers within the two groups, holding group sizes fixed, and raise the
payoffs of at least one group of borrowers – contradicting equilibrium.

23Ahlin (2015b) also shows in a static setting that some joint liability contracts do not give rise to positive
assortative matching in equilibrium, when group size is greater than two. As Ahlin (2015a) shows, potential
equilibrium matching patterns can be quite diverse under substitutability when group size exceeds two.
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homogeneous matching – the contract details matter.

However, these non-PAMmatching results hold under contract forms that are not claimed

to be optimal. To our knowledge the literature does not establish any efficiency properties

of joint liability contracts that do not induce PAM, and hence offers no theoretical rationale

for not observing PAM in joint liability lending. This does not rule out the existence of

such a rationale; further, lenders may blunder in model/contract selection or operate under

distorting political constraints – especially when heavily subsidized through the government

budget, as our lender is. With less theoretical grounding, then, we will test empirically

for matching that is more heterogeneous than random (or NAM), in addition to our main

hypothesis of homogeneous matching (or PAM).

3.3 Matching over degree and type of risk

This section adds a second dimension of heterogeneity and points out a potential pitfall of

relying on voluntary matching. We add to the baseline model the possibility for correlated

risk. Given the agricultural setting of many micro-lenders, including the one in our data, this

is a potentially important modification. However, it is little analyzed in the group lending

literature, and to our knowledge not at all in the context of endogenous group formation.

Given two borrowers i and j with unconditional probabilities of success pi and pj , respec-

tively, the joint output distribution can be written uniquely as:

j Succeeds (pj) j Fails (1− pj)

i Succeeds (pi) pi pj + εij pi(1− pj)− εij

i Fails (1− pi) (1− pi)pj − εij (1− pi)(1− pj) + εij

(5)

The case of εij ≡ 0 is the case of independent returns considered by Ghatak. A positive

(negative) εij gives positive (negative) correlation between borrower returns.

Correlation parameter εij may differ across pairs of borrowers {i, j}. We proceed by

placing a simple structure on correlations which ensures that εij = ε > 0 for any two
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borrowers facing the same types of risk, and εij = 0 for all other pairings.

Assume there are two i.i.d. aggregate sources of uncertainty, or “shocks”, A and B. Each

equals 1 or −1 with equal probability. Every agent is assumed to be exposed to risk from

either shock A or shock B, or neither (N). Let si ∈ S ≡ {A,B,N} denote agent i’s shock

exposure-type. Shock exposure-type is known by all agents but not the lender.24

The probability of success of an agent with si = A and project risk parameter pi equals

pi + γA, for some γ > 0. That is, if there is a good shock (A = 1), the agent’s success

probability is pi + γ; a bad shock (A = −1) lowers the agent’s success probability to pi − γ.

This agent’s project outcome is independent of shock B. The success probability of an agent

with si = B and project risk parameter pi is exactly analogous: pi + γB, independent of A.

The remaining agents, with si = N , succeed or fail independent of realizations of A and B.

With these assumptions, the εij of expression 5 varies across borrowers i and j in a

straightforward way. Let ε ≡ γ2 and κi,j = 1{si = sj = A || si = sj = B}. Then

εij = κi,jε .

In other words, returns are positively correlated for borrowers exposed to the same type

of risk (κi,j = 1), because probabilities of success are pushed in the same direction by the

shock.25 On the other hand, for borrowers not exposed to the same shock (κi,j = 0), εij = 0,

because the shocks each borrower is exposed to are independent.26

In summary, the correlation structure boils down to εij = ε (εij = 0) for pairs exposed

(not exposed) to the same shock. The payoff of borrower i when matched with borrower j

is now

πij = R− rpi − c[pi(1− pj)− εκi,j ] = R− rpi − cpi(1− pj) + cεκi,j . (6)

24In reality, the lender may have some clues, e.g. borrower occupation. One can interpret this assumption
as applying to the unobserved aspects of risk exposure.

25With probability 1/2, the shock to which both are exposed is good and the probability of both succeeding
is (pi + γ)(pj + γ); similarly, with probability 1/2 the probability of both succeeding is (pi − γ)(pj − γ). The
unconditional probability of both succeeding is thus pipj + γ2.

26Greater scope for diversification would be present if shocks A and B were negatively correlated, which
could easily be incorporated without changing results.
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The last term (cε) represents a payoff boost from matching with a partner exposed to the

same risk. This is because positive correlation of returns in the group lowers chances of

having to bail out one’s partner.

In this context, the following can be shown:

Proposition 1. Assume a continuum of borrowers. In equilibrium, almost every group is

homogeneous in both riskiness (p ∈ [p, p]) and shock exposure-type (s ∈ {A,B,N}).

Thus, groups match homogeneously in riskiness (pi) and shock exposure-type (si); they

contain either all A-risk, all B-risk, or all N -risk borrowers. The intuition for shock exposure

homogeneity is simple: borrowers choose to anti-diversify their groups so as to lower their

chances of facing liability for their partners.

This result holds with a continuum of borrowers. In a finite population, unidimensionally-

optimal matching along both dimensions simultaneously may not be feasible, in which case

tradeoffs between the two dimensions of matching arise. Homogeneity in one dimension may

be (partially) sacrificed to achieve it in the dimension with greater payoff salience. Nonethe-

less, payoff function complementarities will push toward homogeneity in both dimensions.27

Homogeneous borrower matching along the correlated risk dimension appears to work

against efficient lending. In a finite population, it may divert borrowers from rank-ordered

matching by riskiness – which is the basis for group lending’s efficiency gains in this context.

More importantly, correlated risk lowers the effective rate of joint liability. In the extreme

case of perfect correlation, for example, the effective rate of joint liability is 0 regardless of

how the bank sets c, since when one borrower fails, they both do. In general, the greater the

correlation, the more irrelevant and blunted is any joint liability stipulation. This takes away

from the lender a potentially valuable tool that can be used to increase lending efficiency,

as shown in Section 3.1.28 Thus, some dimensions of voluntary matching may not work in

27As Fox (2010a,b) shows, with a sufficient amount of data on matches and borrower characteristics, and
under a plausible assumption, complementarities in both dimensions can be identified, along with the relative
strength of the two complementarities.

28See equation 4; the size of safe borrowers’ implicit discount is proportional to the rate of joint liability.
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favor of efficiency.

The point made in Section 3.2 again holds: other ways of implementing joint liability

could lead to different matching patterns. For example, dynamic joint liability contracts

involving the denial of future loans would reward formation of diversified groups; diversifi-

cation would raise chances of partner bailouts that could extend the borrowing relationship.

So, the empirical work will test for both diversification and anti-diversification, the latter

being our focal hypothesis.

4 Data and Variable Descriptions

The empirical goal of the paper is to assess matching patterns of borrowing groups related

to riskiness and types of risk exposure.

4.1 Data description and environment

The data come from the Townsend Thai survey effort. In May 1997, a cross section of

192 villages was surveyed, covering four provinces from two contrasting regions of Thailand,

both with large agricultural sectors. In each village as many borrowing groups of the Bank

for Agriculture and Agricultural Cooperatives (BAAC) as possible were interviewed, up to

two. This baseline survey contains data on 262 groups, 200 of which are one of two groups

representing their village. Unfortunately for the purposes of this study, the borrower-level

data provided in this survey are minimal – they do not include risk variables – and they are

all provided by the group’s official leader, not the individual borrowers.29

Hence, we turn to a resurvey, conducted in April and May 2000. The resurvey data were

collected from a random subset of the same villages, stratified at the sub-district (tambon)

The lender could in principle use a higher c to neutralize higher correlated risk. However, this is not
possible since, as Gangopadhyay et al. (2005) argue, c is likely bounded above by r and is already optimally
set at its upper bound when risk is uncorrelated.

29The concern is that when one person responds for each group member, measurement error can be highly
correlated within the group. This would exaggerate differences across groups, and homogeneity of matching
would be overestimated.
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level. Included are data on 87 groups, 14 of which are the only groups in their village, 70

of which are one of two groups interviewed from the same village, and 3 of which are one

of three groups interviewed from the same village.30 Though observations are fewer, the

resurvey data is preferable because individual group members respond to questions on their

own behalf, up to five per group and on average 4.5; and because several resurvey questions

were designed to measure income risk and correlatedness, the key variables in the theory. In

total, we have 36 villages with multiple groups.

The BAAC is a government-operated development bank in Thailand. It was established

in 1966 and is the primary formal financial institution serving rural households. It has

estimated that it serves 4.88 million farm families, in a country that had just over sixty

million inhabitants, about two thirds of which lived in rural areas. In the Townsend Thai

baseline household survey covering the same villages, BAAC loans constitute 34.3% of the

total number of loans, as compared with 3.4% for commercial banks, 12.8% for village-

level financial institutions, and 39.4% for informal loans and reciprocal gifts (Kaboski and

Townsend, 1998).

The BAAC allows smaller loans to be backed only with social collateral in the form of joint

liability.31 This kind of borrowing is widespread: of the nearly 3000 households in the baseline

household survey, just over 20% had a group-guaranteed loan from the BAAC outstanding

in the previous year. To borrow in this way, a borrower must belong to an official BAAC

borrowing group and choose the group-guarantee option on the loan application. The group

then faces explicit liability for the loan; that is, if a group member is delinquent on a loan,

the BAAC may opt to follow up with the delinquent borrower or other group members in

search of repayment. There can also be dynamic repercussions: some group members report

delays or greater difficulties in getting future loans when a group member is in default.

Groups typically have between five and fifteen members; about 15% are larger. Typically,

30This was apparently a mistake in implementation of the data collection methodology, which capped
responses to two groups per village; we use the three-group village anyway.

31The cap on group loans at the time of the baseline survey was 50,000 Thai baht, about $2000. The
median group loan was closer to $1000.
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groups are born when borrowers propose a list of members to the BAAC, and the BAAC

then approves some or all members. The BAAC seems to use its veto power sparingly: only

about 12% of groups in the baseline survey report that the BAAC struck members from

the list.32 We know of no case where the BAAC adds members to a list or forms a group

unilaterally. Thus, while the BAAC has some say in group formation, it appears that group

formation is primarily at the discretion of the borrowers themselves.

4.2 Variable descriptions

The main empirical strategy involves comparing groups in the same village to determine

whether within-group homogeneity is greater than random assignment of borrowers to groups

would predict. To do so, measures of riskiness and of correlatedness are necessary. These

are summarized in Table 1.

Our main measure of riskiness takes the theory (section 3.1) quite literally. Group mem-

bers were asked what their income would be in the coming year if it were a good year (RHi),

what their income would be if it were a bad year (RLo), and what they expected their income

to be (R). Assuming that income can take only one of two values, RHi and RLo, and that R

represents the mean, the probability of success, or p, works out to be

p =
R− RLo

RHi − RLo

,

using the fact that pRHi + (1− p)RLo = R.33 Another measure of risk, less directly related

to the model, is the coefficient of variation of income.34 Based on the same assumed

income distribution, this works out to be

σR

R
=

√
RHi

R
− 1

√
1− RLo

R
,

32This is in response to a free-form question about how the group’s original members were determined.
33The measure described here is used by Ahlin and Townsend (2007b) in their finding of direct evidence

for adverse selection in this credit market.
34The coefficient of variation equals the standard deviation normalized by the mean.
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Table 1 — Summary Statistics

Variable Mean Median Std Dev Min Max Obs

Riskiness

Probability of Success 0.426 0.400 0.253 0.000 1.000 338
(Future Income)

Coefficient of Variation 0.449 0.400 0.287 0.000 1.388 313
(Future Income)

Type of Risk Exposure

Revenue from as
Pct of Total Revenue:
Rice Farming 30.6% 18.5% 31.1% 0.0% 100.0% 390
Corn Farming 4.0% 0.0% 13.4% 0.0% 83.3% 390
Vegetable Farming 1.0% 0.0% 7.1% 0.0% 76.9% 390
Orchard Farming 1.7% 0.0% 10.1% 0.0% 99.8% 390
Other Crop 10.9% 0.0% 20.3% 0.0% 94.3% 390
Raising Shrimp 2.8% 0.0% 14.4% 0.0% 100.0% 390
Raising Fish 0.0% 0.0% 0.1% 0.0% 1.4% 390
Raising Chicken or Ducks 0.2% 0.0% 1.5% 0.0% 20.9% 390
Raising Pigs, Cows or Buffalo 4.4% 0.0% 13.6% 0.0% 76.5% 390
Raising other Livestock 0.1% 0.0% 1.6% 0.0% 31.6% 390

(All Farming) 55.6% 58.8% 33.9% 0.0% 100.0% 390
(Wages, Pensions, Remittances) 27.2% 14.9% 29.3% 0.0% 100.0% 390
(All Business) 9.5% 0.0% 23.1% 0.0% 100.0% 390

Worst Year for Income [65.6% last yr, 16.6% yr before, 17.4% same] 390
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which is simply the percentage deviation from expected income, averaged (geometrically)

over good and bad outcomes.

Correlatedness is proxied in two ways. First, we use information on occupation, and

more specifically, fraction of revenue coming from various agricultural occupations. Each

borrower reports the amount of revenue received in more than thirty categories. Ten of the

categories are agriculture-related – “rice farming”, “corn farming”, “raising shrimp”, “raising

chicken or ducks”, etc. Our measure of occupation is a vector with ten entries, each giving

the fraction of total household revenue accounted for by one agricultural category.

This measure is motivated by the setup of section 3.3, which features household exposure

to various shocks. We generalize from that section’s binary measure of occupation/shock-

exposure because some degree of within-household occupational diversification is common

in our data. Occupational similarity between two borrowers is then measured as the dot

product of their respective vectors; this gives the probability that a random dollar drawn

from each borrower’s revenue comes from the same agricultural occupation. It also is the

measure of correlatedness directly suggested by Section 3.3’s model.35 We also choose to focus

specifically on agricultural revenue components because they arguably entail more exposure

to common shocks than the other revenue categories.36 Further, the BAAC explicitly targets

farmers, so agricultural revenue makes up the majority of total revenue (see Table 1).

Second, we use timing of bad income years, worst year. Specifically, borrowers are asked

which year of the past two was worse for household income: “one year ago”, “two years ago”,

or “neither”. If borrowers are exposed to the same aggregate shocks, bad income years are

more likely to coincide; thus coincidence of bad years can proxy anti-diversification.

One could certainly envision more informative measures of riskiness and correlatedness

35The dot product would give the κi,j of Section 3.3 if we had only two revenue categories and the
corresponding vector entries had to be 0 or 1. One can generalize the theory of Section 3.3 to allow for
more than two occupations and fractional identification with these occupations, in such a way that the dot
product remains the appropriate measure of correlatedness.

36Prevalent non-agricultural revenue categories include wages, remittances, business, and investment in-
come. It is not clear that two households both with wage or small business income, for example, face the
same degree of correlatedness as two households both engaged in rice or shrimp farming.
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than the ones available from this dataset. However, the first-order effect from any noisi-

ness in these measures should be to make non-random matching harder to detect; if the

measures are pure noise, for example, the matching pattern will be indistinguishable from

random matching. Thus, our main measurement-error concern is that we are likely to be

underestimating existence of systematic matching patterns.

5 Univariate Methodology and Results

In this section, we examine matching patterns one characteristic at a time. Section 6 extends

the analysis to consider matching along multiple characteristics.

5.1 Univariate Methodology

Section 5.1.1 proposes a way to combine permutation testing with standard metrics to as-

sess homogeneity of matching in a given village (matching market). Section 5.1.2 shows

how to use these village-level measures in a nonparametric statistical test across all villages

for homogeneous/heterogeneous matching. Section 5.1.3 proposes alternative, model-driven

metrics of matching that can be combined with this nonparametric test to assess whether

matching is driven by complementarity (PAM) or substitutability (NAM).

5.1.1 Measuring homogeneity/heterogeneity of matching

Consider data on variable X from two groups L and M in village v, of respective sample

sizes l and m: L = (x1, ..., xl) and M = (xl+1, ..., xl+m).

First, assume X is an ordered variable, e.g. riskiness. One way to measure homogeneity

of matching is to calculate a variance decomposition of X = (x1, ..., xl+m) into between-

group and within-group components. The between-group variance component is maximized

in a rank-ordered grouping, so a larger between-group component can be taken as greater

evidence for homogeneous matching. To illustrate, consider a village with 2 groups of size
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4, with success probabilities37 X = (1, 2, 4, 5, 6, 7, 8, 9). Compare the borrower grouping

L = (2, 5, 6, 8) and M = (1, 4, 7, 9) with the grouping L′ = (1, 2, 5, 6) and M ′ = (4, 7, 8, 9).

The first grouping has a between-group variance component of 0%, while the second grouping

has a between-group component of 44%. The higher value reflects the more homogeneous

matching of the second grouping – “close” to rank-ordering – while the lower value reflects

the more mixed first grouping – equal means, and thus “far” from rank-ordering.

An alternative metric that uses only the data’s ordinality is a rank correlation. In par-

ticular, one can calculate Kendall’s taub
38 between the data X and a group index Y , where

for example y1 = ... = yl = 1 and yl+1 = ... = yl+m = 2. Using the groupings of the previous

example, Kendall’s taub between (2, 5, 6, 8, 1, 4, 7, 9) and group index (1, 1, 1, 1, 2, 2, 2, 2) is

0%, and between (1, 2, 5, 6, 4, 7, 8, 9) and the same group index is 57%.39 Again, the higher

value reflects more homogeneous matching, and the lower value more mixing; Kendall’s taub

is maximized under rank-ordering.

An appropriate metric for non-ordered, categorical variables, e.g. occupation and worst year,

is the chi-squared independence (or homogeneity) test statistic.40 This statistic quantifies de-

viations from the grouping in which each group has the same proportion of responses in each

category as the village population – thus it is maximized under group homogeneity, and

minimized (at 0) under an equal distribution of types across groups. For example, letting

A and B be two occupations (shocks), compare the following grouping: L = (A,A,B,B)

and M = (A,A,B,B), with an alternative: L′ = (A,A,A,B) and M ′ = (A,B,B,B). The

chi-squared test statistic for the first grouping is 0 and for the second grouping is 2.

We thus have three homogeneity metrics, two for ordered variables and one for categorical

variables. To move toward a statistical test for homogeneous matching, we use permutation

37For brevity, all probabilities are multiplied by 10, the true data being (0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).
38Results using Spearman’s rho end up nearly identical, so we do not report them. Formulas for Kendall’s

taub and Spearman’s rho can be found in Gibbons and Chakraborti (2003, pp. 419-20, 422-3).
39The correlations would be the same but negative if the group indices were reversed, i.e. if we used

group index vector (2, 2, 2, 2, 1, 1, 1, 1). Since group index is arbitrary, we take the absolute value of the rank
correlation (more generally, the maximum across all potential group indexings).

40The formula and discussion can be found in DeGroot (1986, pp. 536-7, 542-3).
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testing to scale each metric.

Specifically, consider again observed data X = (x1, ..., xl+m) from two groups in village

v, L and M , of respective sizes l and m. We assume that the relevant matching market for

group formation is the village – a reasonable assumption since villages are relatively small

and geographically concentrated. Hence, we form all possible combinations of the l + m

borrowers into two groups of respective sizes l and m and perform the same calculation –

variance decomposition, rank correlation, and/or chi-squared statistic – on each one. The

observed village grouping can then be assigned a “homogeneity percentile” based on where

its calculated value falls relative to this universe of possibilities – or homogeneity percentile

range, given ties and a finite population. That is, the permutation test scales the raw

homogeneity score for each village into a value (or range) in [0, 1], with higher numbers rep-

resenting more homogeneous matching and lower numbers representing more heterogeneous

matching. This permutation scaling is applied for each variable and each metric used.

To illustrate, consider again a village with 2 groups of size 4, with success probabilities

X = (1, 2, 4, 5, 6, 7, 8, 9). There are
(
8
4

)
/2 = 35 groupings of these eight borrowers into two

groups of size four. Compared to the grouping L = (2, 5, 6, 8) and M = (1, 4, 7, 9), 32 group-

ings register higher between-group variance while 3 (including the grouping itself) register

exactly the same (zero) between-group variance. Thus this grouping is somewhere between

the 0th and 8.6th percentiles in terms of group homogeneity; its homogeneity percentile

range is [0, 8.6]. The somewhat wide range reflects the ties and the relatively small number

of groupings. Compared to the grouping L′ = (1, 2, 5, 6) and M ′ = (4, 7, 8, 9), 31 groupings

have lower, 2 have the same, and 2 have higher between-group variance. This grouping’s

homogeneity percentile range is thus [88.6, 94.3]. Similarly, applying this permutation test

to the Kendall’s taub rank correlation metric gives a slightly wider homogeneity percentile

range to the first grouping, [0, 11.4], and the same homogeneity percentile range to the second

grouping, [88.6, 94.3].

The same approach can be used with the chi-squared test statistic. There are 17 com-
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binations with a larger chi-squared test statistic and 18 combinations tied with grouping

L = (A,A,B,B) and M = (A,A,B,B). This grouping’s homogeneity percentile range is

then [0, 51.4]. Compared to grouping L′ = (A,A,A,B) and M ′ = (A,B,B,B), 18 combina-

tions have less, 1 combination has greater, and 16 combinations have the same chi-squared

test statistic. This grouping’s homogeneity percentile range is [51.4, 97.1].

Thus for a given variable and homogeneity metric, each village is assigned a homogene-

ity percentile range. A higher homogeneity percentile range reflects more homogeneous

matching, according to the metric used, while a lower homogeneity percentile reflects more

heterogeneous matching. The critical role of the permutation test is to put into context the

observed degree of matching homogeneity, relative to all possibilities given the amount of

borrower heterogeneity that exists in the village.

5.1.2 A Nonparametric Test

We next combine villages in a single test (per variable and homogeneity metric) of the overall

tendency to match homogeneously. Each village’s homogeneity percentile is treated as a draw

from the same distribution, and this distribution is compared using the Kolmogorov-Smirnov

test to a benchmark distribution corresponding to a null hypothesis. An advantage of this

approach is that it is non-parametric and requires no distributional assumptions.

The null hypothesis of the test is that matching is random with respect to the given

variable. The rationale is the same as the one underpinning use of the t-statistic in a linear

regression; in both cases, the null hypothesis is that the variable has no explanatory power.

We claim that the distribution of village homogeneity percentiles that random matching

generates is the uniform on [0, 1]. The idea is as follows. Consider the case of a large

number of borrowers in a village, no two groupings of which result in a tie using the given

homogeneity metric. If each of the N , say, possible groupings is equally likely, as it is under

random matching, then each 1/Nth homogeneity percentile is equally likely to be realized

by a given village. That is, a village’s homogeneity percentile is drawn from the uniform
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distribution – approximately, with the difference getting arbitrarily small as N increases.

With smaller numbers of borrowers and ties, villages are assigned non-negligibly wide

homogeneity percentile ranges, not homogeneity percentiles. The approach is then to draw

a village’s homogeneity percentile randomly from the village’s homogeneity percentile range

via the uniform distribution.

To summarize, let a village’s homogeneity percentile range be calculated by the permu-

tation methods described in the previous section; and let its homogeneity percentile (point

estimate) be drawn at random from the uniform distribution over its homogeneity percentile

range. Then the exact distribution of a village’s homogeneity percentile under random

matching, regardless of the homogeneity metric, is the uniform distribution on [0, 1].

Proposition 2. Under random matching, a village’s homogeneity percentile z is drawn from

the uniform distribution on [0, 1].

The test then constructs a sample CDF from the observed village homogeneity percentiles,

and compares it using the Kolmogorov-Smirnov (KS) test to the uniform distribution. If

the sample CDF stochastically dominates the uniform, this means villages’ homogeneity

percentiles tend to be higher than random matching would give rise to and provides statistical

evidence for homogeneous matching. On the other hand, if the sample CDF is stochastically

dominated by the uniform, this means villages’ homogeneity percentiles tend to be lower

than what random matching would produce, suggesting heterogeneous matching.

We can thus report p-values for these KS one-sided tests of stochastic dominance. Note

that one such p-value involves a set of random choices: the random draws that select villages’

homogeneity percentiles from their homogeneity percentile ranges. Thus, even given the

data, the p-value is a random variable. So, we repeat the test 1 million times under 1 million

different sets of random draws, and report the average p-value across all draws.
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5.1.3 The test with structural matching measures

The homogeneity metrics discussed so far – variance decomposition, rank correlation, and

chi-squared statistic – have the advantage of being standard metrics that clearly quantify

homogeneous matching. They also connect to the theory well in the sense that they are

maximized under the matching pattern predicted by the theory. However, if the baseline

theory held perfectly and there were no measurement error or matching on unobservables,

any grouping other than the maximally homogeneous one would be evidence against the

theory. On that basis, one could question whether matching that is more homogeneous than

random but not perfectly homogeneous is really evidence in favor of the theory.

A typical approach this issue is to assume that matching is occurring on unobservables

as well;41 this would allow “moderately” homogeneous matches to be both observable in

equilibrium and compatible with maximal homogeneity as the unique outcome if matching

were based only on observables. Two ways of implementing this approach empirically are

to assume some structure on the unobservables (e.g. Choo and Siow, 2006), or to directly

assume that matchings that produce higher observable surplus are more likely to be observed

when matching is based both on observables and unobservables (Fox, 2010a,b).

Our approach thus far has been similar in spirit to the Fox approach, but with the implicit

assumption that matchings that produce higher observable homogeneity, rather than higher

observable surplus, are more likely to be observed. In this section, we follow more closely

the Fox approach by focusing on match surplus. The advantage of using observable surplus

rather than observable homogeneity is that this assumption is more closely aligned with the

theory,42 and in fact can be justified from model primitives in some settings (Fox, 2010a,b).43

Ultimately, this method allows identification of complementarity vis a vis substitutability of

41See Chiappori and Salanie (forthcoming) and its references.
42The theory predicts that any observed grouping must maximize the sum of group payoffs, i.e. total

surplus, for if higher surplus were available in a different grouping, then there would exist at least one group
in this alternative grouping whose members could all do better, contradicting equilibrium.

43Related, it has been shown that equilibrium negative assortative matching patterns can appear statis-
tically homogeneous, even as other non-equilibrium matching patterns appear statistically heterogeneous
(Ahlin, 2015a). This implies that the homogeneity spectrum is not identical to the group surplus spectrum.
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the group payoff function (Fox, 2010b). And since complementarity is the basis for PAM,

this uncovers the fundamental interactions driving the matching pattern.

To proceed, it is necessary to specify the form of the surplus function, i.e. the sum of

group payoffs. This is taken directly from the theory. Consider first the baseline model with

uncorrelated risk and observed groups L = {i, j} and M = {i′, j′} in a village. Let group

payoff functions be ΠL and ΠM , where ΠL = πij +πji and ΠM = πi′j′ +πj′i′ . Then ΠL+ΠM

is the total surplus. Using equation 1,

ΠL +ΠM = 4R− (r + c)(pi + pj + pi′ + pj′) + c(pipj + pjpi + pi′pj′ + pj′pi′) .

Note that only the interaction terms (the last parenthetical) may differ across groupings

of the four borrowers. Hence, given our ultimate purpose of comparing ΠL + ΠM against

alternative groupings of the same set of borrowers, we can ignore all but these terms. Further,

since c > 0, it can be ignored in these comparisons. Letting p−k be the success probability

of borrower k’s partner, these terms can be written

∑
k∈L

pkp−k +
∑
k∈M

pkp−k . (7)

Taking the theory to data is complicated by the fact that the borrowing groups in the

data are not pairs, but typically involve 5-15 members. Further, we do not typically have

the entire group’s data, primarily because a maximum of five group members are sampled.

Our strategy will be to proxy for p−k in expression 7 using the average success probability

of the other sampled group members.

Specifically, let group G be a set of grouped borrowers, SG be the sampled subset of

group G, and pS
G

−k be the average success probability in the sampled subset of group G

excluding borrower k. The following is our sample estimate of the relevant part of the
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surplus (expression 7): ∑
k∈SL

pkp
SL

−k +
∑
k∈SM

pkp
SM

−k . (8)

This estimate is simply the sum, over all sampled village borrowers, of the borrower’s suc-

cess probability multiplied by the average success probability of other same-group, sampled

borrowers.44,45 This can be directly calculated from the data using the success probability

variable (see Section 4.2).

Consider also the contract under correlated risk. Let κk,−k be the indicator for whether

borrower k shares the same risk exposure-type as his partner. Using payoff function 6 gives

ΠL +ΠM =4R− (r + c)(pi + pj + pi′ + pj′)

+ c

(∑
k∈L

pkp−k +
∑
k∈M

pkp−k

)
+ cε

(∑
k∈L

κk,−k +
∑
k∈M

κk,−k

)
.

(9)

There are two types of interaction terms in this expression for surplus, involving riskiness

and risk exposure-type (the first and second parentheticals on the second line, respectively).

To test for (anti-)diversification using the univariate techniques of this section, only the

interactions involving risk exposure-type are used.46 Following the above techniques and

defining κSG

k,−k as the average correlatedness dummy of borrower k in group G with other

sampled group G members, our estimator for the part of surplus due to correlated risk is

∑
k∈SL

κSL

k,−k +
∑
k∈SM

κSM

k,−k .

This estimate is simply the sum, over all sampled village borrowers, of the fraction of other

44This form of the payoff function can be justified by the linear n-person group contract suggested in
Ghatak (1999), in which each borrower who succeeds owes c per fellow unsuccessful borrower.

45To illustrate, sampled grouping L = (0.2, 0.5, 0.6, 0.8) and M = (0.1, 0.4, 0.7, 0.9) has sum of group
payoffs of 2.02 – i.e. 0.2 ∗ 0.633 + 0.5 ∗ 0.533 + ... + 0.7 ∗ 0.467 + 0.9 ∗ 0.4 – compared to 2.35 for more
homogeneous grouping L′ = (0.1, 0.2, 0.5, 0.6) and M ′ = (0.4, 0.7, 0.8, 0.9).

46That is, we examine each separately in this univariate analysis, matching on riskiness (see equation 8)
and (anti-)diversification (see below). Testing both together based on the entire payoff function, which
requires dealing with unknown parameter ε, is reserved for Section 6.
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same-group, sampled borrowers exposed to the same risk.47

Comparing the observed grouping’s surplus with those of all unobserved groupings of

the same borrowers into similarly-sized groups – i.e., the same permutation test as before

– generates a “complementarity” percentile (range). We call this a complementarity per-

centile because it quantifies how well the observed grouping maximizes the (observable)

surplus function, whose key feature is complementarity. A low complementarity percentile

is evidence of substitutability of types in the surplus function; this is because the observed

grouping comes closer to minimizing the surplus function based on complementarity, which

is equivalent to maximizing the surplus function based on substitutability.48

The same logic as before gives that random matching would give rise to a uniform dis-

tribution of complementarity percentiles. Thus, the procedure is as before: use permutation

tests to calculate complementarity percentile ranges for each village’s observed grouping,

then use the KS test to compare the sample CDFs of village complementarity percentiles to

the uniform distribution.

The remaining question in this approach is how to use the data to proxy for κi,j , the

indicator for being exposed to the same risk. In the case of worst year, κi,j is simply proxied

by 1{worst yearGi = worst yearGj }; that is, iff the two borrowers give the same answer in

identifying the worst year, they are considered exposed to the same risk. In the case of

occupation, a vector with the fraction of total revenue coming from each of ten agricultural

sectors, κi,j is measured as the dot product of the borrower’s vectors; see section 4.2 for

explanation.
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Figure 1: Probability of success. Dashed Lines: Uniform CDF. Solid Lines: Sample CDFs
of villages’ homogeneity percentiles based on rank correlation Kendall’s taub (left panel) and
of villages’ complementarity percentiles based on the matching surplus function (right panel).

5.2 Univariate Results

Sorting by riskiness. The success probability, or p, is the focus of our empirical tests

for homogeneous matching by riskiness. The sample CDF of village homogeneity percentiles

based on Kendall’s taub is graphed in the left panel of Figure 1.49 Based on this rank

correlation, the mean (median) village is more homogeneously matched than 58% (59%)

of all possible combinations of borrowers into groups of the observed sizes. The random-

matching benchmark, the uniform, is graphed as a dashed line. Using a one-sided KS test,

we reject at the 5% level the hypothesis of heterogeneous matching, that is, that the true

47For example, compare grouping L = (A,A,B,B) and M = (A,A,B,B) with grouping L′ = (A,A,A,B)
and M ′ = (A,B,B,B). The correlation-related payoffs sum to 2.67 in the first grouping and to 4 in the
second, more anti-diversified grouping. In the first grouping, for example, 1/3 of each borrower’s fellow group
members are exposed to the same shock; summing 1/3 across 8 borrowers gives 2.67.

48With riskiness, note that if c < 0, types are substitutes in the surplus function and the equilibrium
grouping would minimize the expression derived. With risk exposure-type, we are abusing complementar-
ity/substitutability terminology a bit since the payoff function is not differentiable in borrower types; but
the idea is similar in that low complementarity percentiles would imply higher payoffs to diversification.

49For this and all graphs, the reported p-values are averages over 1 million KS p-values based on random
draws from each village’s percentile ranges. The sample CDFs graphed are essentially averages over an
infinite number of sample CDFs constructed based on these random draws; equivalently, they incorporate
the percentile range of each village directly. Means and medians are computed using these sample CDFs.
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Figure 2: Coefficient of Variation for income (standard deviation/mean). Dashed Lines:
Uniform CDF. Solid Lines: Sample CDFs of villages’ homogeneity percentiles based on rank
correlation Kendall’s taub (left panel) and based on variance decomposition (right panel).

distribution of village homogeneity percentiles is first-order stochastically dominated by the

uniform.50 These results point to matching by riskiness that, while not rank-ordered, is

statistically distinguishable from random matching in the direction of homogeneity.

The sample CDF of village complementarity percentiles based on the surplus function is

graphed in the right panel of Figure 1. The results are quite similar. The mean (median)

complementarity percentile is 56% (61%) and substitutability is rejected at the 5% level.

A second measure of riskiness is the coefficient of variation of projected income. This

measure is a proxy and cannot be substituted directly into the surplus function, making the

structural approach infeasible. Hence, the sample CDFs of village homogeneity percentile

ranges for the coefficient of variation based on Kendall’s taub and variance decomposition are

graphed in Figure 2. Here, the variance decomposition gives strong evidence of homogeneous

matching: the mean (median) village is more homogeneously matched than 63% (72%) of

all possible borrower groupings, and heterogeneous matching is rejected at the 5% level.

50Results using the variance decomposition homogeneity metric are similar: mean (median) of 57% (62%),
and KS one-sided (+) p-value of 0.01.
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Figure 3: Worst Year for income. Dashed Lines: Uniform CDF. Solid Lines: Sample CDFs
of villages’ complementarity percentiles based on the matching surplus function (left panel)
and of villages’ homogeneity percentiles based on the chi-squared statistic (right panel).

The rank correlation gives a bit less evidence for homogeneous matching by coefficient of

variation: the means and medians drop to 59% and 56%, respectively, and the KS tests come

somewhat close but fail to reject heterogeneous matching at the 10% level.

Overall, the data give solid evidence for a non-negligible degree of homogeneous (and

complementarity-based) matching by riskiness, and are typically able to reject heterogeneous

(substitutability-based) matching. From the standpoint of the theory of section 3, this

suggests that safe borrowers are indeed receiving lower implicit borrowing rates because

they tend to have safer partners.

Sorting by risk exposure-type. We next examine diversification within groups. Since

worst year is a categorical variable, Figure 3 reports results using the chi-squared test

statistic and the matching surplus metric. Using the surplus metric, the average (median)

village is more anti-diversified than 60% (65%) of possible groupings; using the chi-squared

metric, the average (median) village is more anti-diversified than 59% (62%) of possible

groupings. In both cases, diversification is rejected by the KS test at the 10% level.
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Figure 4: Agricultural Occupation. Dashed Lines: Uniform CDF. Solid Lines: Sample
CDFs of villages’ complementarity percentiles based on the matching surplus function (left
panel) and of villages’ homogeneity percentiles based on the chi-squared statistic (right
panel).

Regarding occupational diversification, results using the chi-squared and the matching

surplus metrics are graphed in Figure 4. Interestingly, they suggest that matching is not too

different from random based on agricultural occupation. The means and medians are in the

40%’s, and the KS p-values are lower in the test against anti-diversification; however, neither

diversification nor anti-diversification can be rejected at better than a 20% significance level.

Interestingly, the results for worst year suggest that borrowers have incomes that are

somewhat anti-diversified along group lines, while the results for occupation suggest that

this anti-diversification does not take the form of (agricultural-)occupational homogeneity.

A potential interpretation is that the lender encourages diversification within groups along

observable dimensions, including by agricultural occupation, but that the borrowers are able

to achieve some anti-diversification by exploiting other, unobserved traits. This suggests

that anti-diversification is occurring, and partially undoing the risk-pricing improvements,

but perhaps not to the degree it would be if matching were more homogeneous by occupation.
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5.3 Discussion of Univariate Results

The univariate tests suggest that group composition is homogeneous along both riskiness

and risk exposure-type dimensions – not perfectly homogeneous, but moreso than under

random matching. Of course, the evidence is not proof of causality running from riskiness or

exposure-type to matching behavior. For example, it may be that friends or relatives group

together, friends or relatives that are alike in certain regards, including along risk dimensions.

Or, perhaps monitoring is easier within a group of similarly-occupied individuals, who by

nature of their occupation face similar amounts and types of risk (though the lack of observed

occupational homogeneity casts doubt on this particular story).

However, if the goal is to assess whether the Ghatak model is an empirically plausible

explanation of group lending’s popularity and ability to revive credit markets, these simple

univariate results are in some ways preferable to alternatives. The reason is that the safe-

borrower discount embedded in lending to homogeneous groups exists regardless of how

groups end up homogeneous by riskiness. Borrowers may have consciously considered the

risk of their partners in forming groups, or they may have simply formed groups with friends

or relatives who happened to have similar risk characteristics; either way, safe borrowers end

up with safer partners. Given this homogeneous matching by riskiness, the joint liability

stipulation is less onerous for safe borrowers, and they get an implicit discount in their

borrowing rate. It is this discount that allows group lending to draw more borrowers into

the market. The point is that, in this framework, matching that is homogeneous by riskiness

– by whatever mechanism – is all that is needed for group lending to offer an improvement

in contracting.

Thus, testing directly the degree of risk homogeneity is arguably the most appropriate

approach to testing the main idea of the Ghatak model. Conversely, rejecting Ghatak’s

main idea based on causally identifying, e.g., kinship and not riskiness as the key matching

determinant would appear to be misguided, if the evidence pointed to risk-homogeneous

groups (as it does here). Similarly, rejecting homogeneous risk-matching based on a zero
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coefficient in a multivariate regression does not necessarily reject the main idea of the Ghatak

model if the coefficient is positive in a univariate regression.

A similar argument can be made about the extended model that incorporates correlated

risk. If there is unconditional evidence for anti-diversification of risk, then that is enough to

raise the concern that some of the contractually stipulated joint liability is being undone –

whether or not the anti-diversification is a conscious choice on the part of borrowers.

Thus, we believe the results of this section are directly informative about the ability and

limitations of the theory to explain the rise of group lending and microcredit.

One shortcoming of these results is that they cannot differentiate between homogeneous

matching and group conformity, in which groups gravitate toward similar risk choices because

they are grouped together. Ideal to distinguish these two stories would be risk data that

pre-dates group formation, which we unfortunately lack. This issue must be left for future

work.51,52

6 Multivariate Methodology and Results

The univariate results are consistent with both dimensions of risk – riskiness and type of

risk exposure – being important for matching. One might wonder, though, if one dimension

of homogeneity is driving the other. Hence, we turn next to a multivariate approach that

allows both dimensions of risk simultaneously to affect payoffs and matching behavior.

We use the matching maximum score estimator of Fox (2010a) to estimate parameters

of the model surplus function that determine whether it displays complementarity or substi-

tutability, along both dimensions.53 The estimator works by choosing parameters that most

51Barr et al. (2015) analyze matching into community-based organizations (CBOs) using pre-match data.
52One might also wonder whether the appearance of more correlated risk within groups than random

matching would predict is a mechanical consequence of the joint liability contract, which can make one
borrower’s bad year a bad year for others who are liable. This is unlikely because the question used asks
about worst year for income, which is likely to be interpreted by the respondents as not including transfers.
Indeed, when asked for the reason for the bad year, about 85% of responses are agricultural shock-related –
prices, weather, or pests. This is by design; the following question asks about how the household responded
to the bad income year, and here is where many of the responses have to do with transfers.

53A reduced-form estimation that included more controls than we use could also be interesting. However,
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frequently give observed agent groupings higher joint surplus (sum of payoffs) than feasible,

unobserved agent groupings. It has been shown consistent in an environment with many

matching markets (as in our setting), assuming that groupings that give higher observable

surplus are more likely to be observed.

Consider observed groups L and M in village v. Let L̃ and M̃ denote an alternative

arrangement of the borrowers from L and M into two groups of the original sizes. As in

section 5.1.1, we assume that borrowers can match with any others in their village; thus L̃

and M̃ represent a feasible, unobserved grouping. If ΠG(φ) gives the sum of payoffs of any

group G as a function of parameters φ, theory predicts

ΠL(φ) + ΠM(φ) ≥ ΠL̃(φ) + ΠM̃(φ). (10)

The matching maximum score estimator chooses parameters φ that maximize the score, i.e.

the number of inequalities of the form 10 that are true, where each inequality corresponds

to a different unobserved grouping L̃, M̃ .

Our set of unobserved groupings, and thus inequalities, comes from all k-for-k borrower

swaps across two groups in the same village.54 For example, if we have data on five borrowers

in each of two groups in the same village, there are 5×5 = 25 one-for-one swaps, 10×10 = 100

two-for-two swaps, and so on.

Consider the model’s expression for the surplus ΠL + ΠM from section 3.3, reproduced

from equation 9 here:

ΠL +ΠM =4R− (r + c)(pi + pj + pi′ + pj′)

+ c

(∑
k∈L

pkp−k +
∑
k∈M

pkp−k

)
+ cε

(∑
k∈L

κk,−k +
∑
k∈M

κk,−k

)
.

Note that all terms in the group payoff function that do not involve interactions between

this is not as attractive in part because our dataset lacks data on social networks.
54If the larger group in a village has sample size m and the smaller group has sample size n, k is capped

at min{n,m− 1}.
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borrower characteristics drop out of inequality 10, since they appear identically on both

sides;55 hence, we can ignore the non-interaction terms.

We proceed as in section 5.1.3. Since groups contain more than 2 members and since our

data contain a subset of each group (up to 5 members), we use a sample analog expression

for the payoff function. Again, let G be defined as a set of grouped borrowers, SG as the

sampled subset of group G, k as a sampled group-G borrower, pS
G

−k as the average success

probability in the sampled subset of group G excluding borrower k, and κSG

k,−k as the average

correlatedness dummy of borrower k with other sampled group-G borrowers. Then, the

sample analog to the (relevant part of the) payoff function is

ΠL +ΠM = c

(∑
k∈SL

pkp
SL

−k +
∑
k∈SM

pkp
SM

−k

)
+ cε

(∑
k∈SL

κSL

k,−k +
∑
k∈SM

κSM

k,−k

)
. (11)

It is this expression that we use for group payoffs in inequality 10.56

Given data on borrower probabilities of success (pGi ’s) and correlatedness (κi,j’s), the

parameters c and β̃ ≡ cε can be estimated, but only up to scale, since multiplication by

any positive scalar would preserve the inequality. Note that ε would be identified as β̃/c.

This approach, however, requires data that can capture the existence of correlation (κi,j) as

distinct from the intensiveness (ε) of correlation. That is, to identify ε, κi,j should reflect the

similarity of shocks to which borrowers are exposed, but not the degree of exposure to those

shocks. Our measures of correlatedness (coincidence of bad years, and occupation) probably

cannot be assumed to distinguish extensiveness from intensiveness of correlatedness.

55Thus coefficients on non-interaction payoff function terms (e.g. R, r) cannot be estimated.
56That is, interaction terms involving sampled borrowers are used to estimate the group payoff function.

Similarly, the counterfactual groups are formed via k-for-k borrower swaps across the sampled subsets of the
groups. Using samples rather than entire groups represents a departure from Fox’s analysis justifying the
estimator. While a full analysis is beyond the scope of this paper, two points can be made. First, it seems
clear that a modification of the key assumption used by Fox would lead to the same results on identification.
The modified assumption would assume that groupings of randomly sampled group borrowers that produce
greater observable surplus are more likely to be observed. Second, this modified assumption appears not
to be much stronger than Fox’s original assumption in the context of i.i.d. assignment-specific error terms,
a context that justifies the original assumption; we conjecture that the sampling-modified assumption is
justified in the same context.
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Rather than attempt to identify ε separately from κi,j , we focus on the overall correlation

between borrowers i and j, call it Ci,j ≡ εκi,j . Ci,j is proxied in different ways, depending on

the variable used (see section 5.1.3). When worst year is used, Ci,j = φworst year 1{worst yeari =
worst yearj}. When occupation is used, Ci,j = φoccupation( 
occi · 
occj) (i.e. the dot product of

the occupational vectors of borrowers i and j). The φ parameters are assumed strictly posi-

tive. Thus, correlatedness is proxied by similarity in bad income years and/or (agricultural)

occupations.

Incorporating Ci,j – for concreteness, proxied here using worst year – and notation similar

to the above into the sampled groups’ payoff function 11 gives

ΠL +ΠM = β1

(∑
k∈SL

pkp
SL

−k +
∑
k∈SM

pkp
SM

−k

)

+ β2

(∑
k∈SL

1{worst yeark = worst year−k}+
∑
k∈SM

1{worst yeark = worst year−k}
)
,

(12)

where β1 = c, β2 = cφworst year, and the terms in the second-line sums represent the fraction of

other, same-group sampled borrowers naming the same worst year as borrower k. Parameter

c can thus be identified in sign but not magnitude; hence, β1 is normalized to +1 or −1 in

estimation.

The main test of the Ghatak (1999) theory and our extension is whether all β’s are posi-

tive. The model assumes that c > 0, which underlies complementarity of types in the payoff

function and hence drives positive assortative matching. A positive estimate of β1 is thus

direct evidence for this complementarity, while a negative estimate suggests matching based

on substitutability of types. Regarding β2(= cφworst year), since φworst year (and φoccupation) is

restricted to be positive and since c > 0 is assumed, the model requires a positive estimate

for β2. A negative estimate would contradict the model, giving evidence that matching is

more consistent with payoffs valuing diversification rather than anti-diversification.

Probabilities of success pk are measured as discussed in section 4. Correlatedness is
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proxied using worst year, occupation, or both, as described. If there are V villages indexed

by v, and each village v has two (sampled) groups, Lv and Mv, the estimator comes from

maxβ1∈{−1,1},β2(,β3)

V∑
v=1

∑
L̃v,M̃v

1{ΠLv +ΠMv > ΠL̃v
+ΠM̃v

},

where the alternate groupings L̃v and M̃v come from all k-for-k borrower swaps, as discussed

above, and there are three parameters when two proxies for correlatedness are included.

We also estimate based on a slightly different objective function, where the score is the

sum of all villages’ fractions of correct inequalities rather than numbers of correct inequalities.

This weights each village equally in its contribution to the estimation and provides a more

similar basis of comparison with the univariate KS results, where each village counts as a

single draw from a distribution.

Maximization is carried out using the genetic algorithm routine in Matlab. Results from

six estimations that alternately use the two objective functions combined with three sets of

proxies for correlated risk are reported in Table 2. The point estimates are based on the

32 villages with sufficient data, and the corresponding 3620 total inequalities. Inference is

carried out by subsampling.57

We find that the estimated coefficient on probabilities of success is consistently positive.

Thus, even when controlling for correlated risk measures, including occupational similarity,

riskiness has explanatory power for group formation consistent with complementarity. This

supports the model, since complementarity is the basis for homogeneous matching and hence

group lending’s improved risk-pricing.

The correlated risk results are also similar to the univariate results, if a bit weaker

57Fox (2010a) notes that the bootstrap is proved inconsistent by Abrevaya and Huang (2005) for a class of
estimators that converge at rate 3

√
n, which almost certainly includes the matching maximum score estimator.

Thus, for each estimation, we create 200 subsamples containing 24 villages’ data, by randomly sampling
without replacement from the 32 villages. Estimation is carried out for each subsample. Operating under

the assumption of 3
√
n-convergence, one can apply the distribution of

(
24
32

)1/3
(β̂24,i − β̂32) to (β̂32 − β0) to

construct confidence intervals, where i ∈ {1, ..., 200} corresponds to the subsamples, β̂24,i are the subsample

estimates, β̂32 is the full-sample estimate, and β0 is the true parameter. See Politis et al. (1999, 2.2).
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Table 2 — Matching Maximum Score Estimation

Variable Number Share Number Share Number Share
Success Probability Est. +1 +1 +1 +1 +1 +1

p-val. Superconsistent
Worst Year Est. 0.40 0.32∗ 0.32 0.33

p-val. 0.18 0.06 0.27 0.31
Occupation Est. -0.062 -0.0029 -0.051 -0.025

p-val. 0.46 0.47 0.34 0.51
Number of Inequalities 3620 3620 3620

Number of Villages 32 32 32
Maximized Objective Fn. 2348 19.3 2205 18.3 2382 19.8

Percent Correct 65% 60% 61% 57% 66% 62%

Note: Each column corresponds to a different estimation; differences arise from the objective function used

(noted atop each column) and the proxies for correlated risk. P-values are from one-sided tests for a negative

(positive) true parameter if the point estimate is positive (negative). They are constructed using subsampling

methods on 200 subsamples, each containing 24 distinct villages. Significance at the 10% level is denoted by ∗.

statistically. The estimates for occupation are slightly negative, but not statistically different

from zero; this closely parallels the univariate results, which were discussed in section 5.2.

Worst year has more explanatory power than occupation (see last two rows of Table 2) and

has consistently positive estimates in a fairly tight range (0.32−0.40). A negative coefficient

can be rejected at the 10% level in one case and the 20%-level in another; when occupation

is included, significance levels drop somewhat.

We interpret these results as supportive of the univariate results, and thus of both aspects

of the theory. They suggest that borrower surplus is higher with both greater homogeneity

in riskiness and greater anti-diversification. The main exception is that occupational anti-

diversification does not appear to be driving matching; as noted earlier, this could be because

the lender encourages diversification along observable dimensions.

7 Conclusion

In the context of joint liability lending and unobserved risk, theory suggests that borrowers

will match homogeneously by riskiness; this embeds an implicit discount for safe borrowers
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and can draw them into the market, increasing intermediation and improving efficiency. We

develop tests of this hypothesis about matching behavior, and find supportive evidence from

Thai microcredit groups: groups are more homogeneous in riskiness than random matching

would predict. Thus, given joint liability, safe borrowers are effectively paying lower interest

rates.

This is direct evidence on a mechanism through which the microcredit innovation of

group lending has contributed to reviving credit markets among poor households around

the world. It adds to our understanding of how innovations in lending have been able to

extend finance to the world’s poor and why group lending has been such a popular lending

mechanism in the microcredit movement.

However, theory also suggests that borrowers may match to anti-diversify risk and thereby

to minimize potential liability for fellow group members. While the first kind of matching

works in favor of efficiency, the second may work against it by limiting the lender’s ability to

use group lending effectively. The data here suggest that mild anti-diversification is indeed

occurring, though not via agricultural occupation.

From a policy standpoint these results show that voluntary matching by borrowers may

also have its downside. Matching to anti-diversify can work against the lender’s interests

and, in equilibrium, the borrowers’. Applying the results narrowly, lenders may want to

intervene to promote risk diversification within groups – for example, requiring occupational

diversity – provided their intervention will not undermine positive assortative matching by

riskiness. More generally, lenders may wish to step in with respect to group composition on

certain dimensions while leaving other dimensions to the borrowers’ discretion.

The paper leaves some open questions for future work to address. First, the risk and

correlation measures used here could be improved upon. Future work with income histo-

ries and/or more detailed elicitations of future income distributions could perhaps push the

analysis further, including in a more quantitative direction. Second, it would be ideal for

matching tests to use measures of risk that pre-date group formation, to distinguish match-
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ing behavior from within-group conformity that occurs after group formation. Third, richer

datasets that include data on social networks, physical distances, etc., could potentially

be used to identify whether risk-homogeneity and anti-diversification are purposeful or are

by-products of other matching considerations. They could also help quantify and pinpoint

matching frictions in these environments.

Appendix

Proof of Proposition 1. Consider an equilibrium assignment. There are six sets into

which all equilibrium groups can be partitioned: AA, BB, NN, AB, AN, BN, where the set

names denote the pair of risk exposure-types of all groups within the partition.

The cross-partial of group payoff functions with respect to pi and pj is still given by

equation 3. Thus the baseline result of homogeneous matching in almost every group holds

in any set of groups within which correlatedness is fixed for all possible pairings of borrowers

within the set – in particular, within AA, BB, and NN.

It remains to show that the sets AB, AN, and BN have zero measure in equilibrium.

Consider AB, for example. Riskiness complementarity implies rank-ordering within risk

exposure-type. That is, if (i, j) and (i′, j′) are equilibrium groups and borrowers i, i′ (j, j′)

are A-risk (B-risk), then one of the following pairs of statements must hold: pi ≥ pi′ and

pj ≥ pj′, or pi′ ≥ pi and pj′ ≥ pj. Otherwise, the grouping (i, j′) and (i′, j) would raise

surplus by increasing payoffs from riskiness complementarity without altering the nature of

the exposure-type matching.

Given this fact and if set AB has positive measure, then for any δ > 0, there must exist

two groups (i, j) and (i′, j′) with |pi−pi′ | < δ and |pj −pj′ | < δ. Fix δ =
√
ε/4 and two such

groups. We will show that with riskiness levels so close, the gains from anti-diversification

(matching A with A, B with B) outweigh any losses from decreased similarity in riskiness.

Without loss of generality, let (i, j) be the safer group, i.e. pi ≥ pi′ and pj ≥ pj′. Using

equation 6, the sum of both groups’ payoffs can be written

4R− (r + q)(pi + pj + pi′ + pj′) + 2q(pipj + pi′pj′) ,

since no borrowers are exposed to the same shocks. An (i, i′) and (j, j′) grouping would
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instead pay

4R− (r + q)(pi + pj + pi′ + pj′) + 2q(pipi′ + pjpj′) + 4qε ;

the last term capturing the gains from anti-diversification. Now if pj′ ≥ pi or pi′ ≥ pj , then

the new grouping is rank-ordered by riskiness, so pipi′ + pjpj′ ≥ pipj + pi′pj′ and surplus

has increased. If instead pj′ < pi and pi′ < pj, then all four riskiness levels (pi, pj, pi′ , pj′)

are within 2δ of each other, which caps the difference between pipi′ + pjpj′ and pipi′ + pjpj′

at 4δ2 = ε.58 In this case too, surplus has increased. Since this alternate grouping raises

surplus, the matching must not be an equilibrium; we thus contradict the hypothesis that

AB has positive measure. By a similar argument, AN and BN cannot have positive measure.

Proof of Proposition 2. Let there be N groupings and K ≤ N unique values that arise

when the given sorting metric is applied to the N groupings, with values v1 < v2 < ... < vK .

(Ties involve K < N .) Let ni be the number of combinations that give rise to value vi and

Ni be the number of combinations that give rise to any value v ≤ vi, with N0 ≡ 0; then

Ni =
∑i

k=1 nk and NK = N . If sorting is random, each of the N combinations of borrowers

is equally likely to obtain. With probability πi ≡ ni/N the realized combination will result

in value vi, leading to calculated sorting percentile range [Ni−1

N
, Ni

N
].

We show next that the CDF of sorting percentiles is uniform, i.e. F (z) = z. Fix z ∈ [0, 1].

There exists some i ∈ {1, 2, . . . , K} such that z ∈ [Ni−1

N
, Ni

N
]. Then the probability that a

village’s sorting percentile is less than z, i.e. F (z), is the probability that its grouping leads

to any value strictly less than vi plus the probability that its grouping leads to value vi and

its sorting percentile picked from the uniform on [Ni−1

N
, Ni

N
] is below z:

F (z) =

i−1∑
k=1

πk + πi

∫ z

Ni−1
N

1
Ni−Ni−1

N

dz =

i−1∑
k=1

nk

N
+

ni

N

N

ni
(z − Ni−1

N
) = z,

where the definitions of the πi’s and the Ni’s have been used in the simplification.

58For more detailed derivation, see Ahlin (2009).
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