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Abstract

Poverty measures typically do not account for mortality, resulting in counter-

intuitive evaluations. The reason is that they (i) do not attribute intrinsic value

to the lifespan and (ii) suffer from a mortality paradox. We propose the first

poverty index that always attributes a positive value to lifespan and does not

suffer from the mortality paradox. This index, called the poverty-adjusted life

expectancy, follows an expected lifecycle utility approach à la Harsanyi and is

based on a single normative parameter that transparently captures the trade-

off between poverty and mortality. Empirically, we show that accounting for

mortality substantially changes cross-country comparisons and trends. We also

quantify the fraction of these comparisons that are robust to the choice of the

normative parameter.

JEL: D63, I32, O15.

Keyworks: Multidimensional poverty, Poverty, Mortality, Mortality paradox.

∗Acknowledgments : We express all our gratitude to Kristof Bosmans, Jed Friedman, Aart

Kraay, Dilip Mookherjee and Jacques Silber for helpful discussions and suggestions. This work

was supported by the Fonds de la Recherche Scientifique - FNRS under Grant n◦ 33665820 and

Excellence of Science (EOS) Research project of FNRS n◦O020918F. We are grateful to the audience

at the World Bank seminar for providing insightful comments. All errors remain our own. The

findings, interpretations, and conclusions expressed in this paper are entirely those of the authors

and should not be attributed in any manner to the World Bank, to its affiliated organizations, or

to members of its Board of Executive Directors or the countries they represent. The World Bank

does not guarantee the accuracy of the data included in this paper and accepts no responsibility for

any consequence of their use.
†World Bank, bdecerf@worldbank.org.
‡CEPR, CRED, DEFIPP, University of Namur.
§CRED, DEFIPP, University of Namur.

1



1 Introduction

Poverty measures are widely used for monitoring progress and guiding policies. How-

ever, most poverty measures do not account for the impact that mortality has on

longevity.1 The orders of magnitudes involved are staggering. As illustrated in Fig-

ure 1, in 2021, a new born expects to lose 7 years of life due to premature death2

and to spend 7 years of life in poverty according to our Expected Deprivation index

(which we define below). This represents, overall, 1.67 billion years of life either

spent in extreme poverty or lost to premature death in that year.

Figure 1: Expected number of years spent in extreme poverty and prematurely lost
for a newborn worldwide according to ED1,70, 1990-2021.
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Reading: in 1990, a newborn expected to spend 25 years in poverty and to lose 12
years due to premature death.

Mortality should be integrated into poverty measurement for several reasons.

First, mortality reduces the lifespan of the deceased. As lifespan is a key resource,

it should be attributed a positive intrinsic value. Second, mortality has a perverse

instrumental impact on poverty measures. As observed by Kanbur and Mukherjee

(2007), poverty measures face a “mortality paradox”, since the death of poor individ-

uals is measured as an improvement. Finally, an integrated indicator may be useful

to guide policy decisions that require trading-off poverty and mortality. How to allo-

cate a fixed budget between poverty alleviation and premature mortality reduction?

How much should be spent on AIDS prevention programs? An integrated indicator

that meaningfully reflects the relative impacts that poverty and mortality have on

1This remark also applies to measures of multidimensional poverty, which always ignore the
impact of mortality on the deceased. While we refer to income poverty throughout the paper, our
argument can be applied to these measures as well.

2We define a death as premature if it occured before 70 years old. The average life expectancy
in 2021 is 71 in our data.
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well-being may prove useful in guiding such choices.

Currently, there exists no indicator that integrates mortality into poverty mea-

surement in a way that systematically attributes intrinsic value to longevity and

always avoids the mortality paradox. Some poverty indicators avoid the mortal-

ity paradox but do not attribute intrinsic value to longevity (Kanbur and Mukher-

jee, 2007; Lefebvre et al., 2017). Some poverty indicators attribute intrinsic value

to longevity only below some age threshold defining premature mortality, but do

not avoid the paradox due to their “mash-up” aggregation of poverty and mortal-

ity (Watkins, 2006), or only avoid the mortality paradox below this age threshold

(Baland et al., 2021). The Generated Deprivation proposed by Baland et al. (2021)

is closest to satisfying the desired properties. However, this index is not easy to

interpret and it exhibits non-monotonic behavior after a permanent mortality shock.

In this paper, we propose a new index, the poverty-adjusted life expectancy

(PALEt
θ), that meaningfully integrates the poverty and mortality observed in a given

year. This index systematically attributes intrinsic value to longevity and avoids the

mortality paradox at all ages. We study the conditions under which its comparisons

are robust to all plausible values of its normative parameter. We show that PALEt
θ

reacts straightforwardly to mortality shocks. Our empirical application shows that

our indicators substantially change poverty comparisons and quantifies the cases for

which reversed comparisons are robust.

Our main indicator, PALEt
θ, is normatively grounded on the expected lifecycle

utility, the measure of social welfare proposed by Harsanyi (1953).3 Under some

conditions, PALEt
θ normalizes the expected lifecycle utility of a newborn who as-

sumes she will be confronted throughout her lifetime to the poverty and mortality

prevailing in the current period.4 This index simply counts the number of years that

such newborn expects to live but weighs down the periods that she expects to live

in poverty. Mathematically, our index is obtained by multiplying life expectancy at

birth by a factor one minus the fraction of poor, with a lower weight being given

to the latter. This (normative) weight θ > 0, which captures the trade-off between

poverty and mortality, corresponds to the fraction of the period utility lost when

poor. When being poor has no utility cost, θ takes the value zero and PALEt
0 corre-

sponds to life expectancy at birth. When being poor (for one year) is as bad as losing

one year of life, θ = 1 and our index PALEt
1 then corresponds to the poverty-free

life expectancy at birth (Riumallo-Herl et al., 2018), i.e. the number of years of life

a newborn expects to live out of poverty. PALEt
θ does not suffer from the mortality

paradox as long as θ ≤ 1. Besides its theoretical properties, PALEt
θ enjoys two prac-

tical advantages. First, its data-requirement are minimal as only the life-expectancy

at birth and the poverty head-count ratio are necessary. Second, PALEt
θ has a sim-

ple interpretation, as it measures the equivalent number of years of life spent out of

poverty.

To measure the real world relevance of our indexes, we combine data sets provided

3Following Harsanyi, social welfare in a given period can be understood as the lifecycle utility
expected by a newborn when drawing at random a life that reflects the outcomes observed in that
particular period.

4As we make clear later, our index is closely related to the concept of life expectancy, and its
interpretation is based on similar assumptions. In particular, our index is not a forecast or a record
of the actual average lifecycle utility of the cohort born in a particular period.
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by the World Bank data on income poverty (Poverty and Inequality Platform (World

Bank, 2024)) and an internationally comparable data set on mortality data (Global

Burden of Disease Collaborative Network, 2021) from 1990 to 2021. We show that

mortality is growing in relative importance and substantially affects global poverty

comparisons: during the 2005-2019 period, at least 34% of PALEt
θ’s growth was

due to the growth of life expectancy, as opposed to 17% from 1991 to 2004. For all

possible values of θ, PALEt
θ is able to solve in 2019 about half of the between country

and 40% of the within country comparisons when focusing on these comparisons for

which life expectancy and headcount are conflicting.

The remainder of the paper is organized as follows. In Section 2, we define the

PALEt
θ indicator, derive the conditions under which it corresponds to social welfare

à la Harsanyi, and characterize the conditions under which its comparisons are robust

to all the values of its normative parameter. In Section 3, we present our global em-

pirical application, which quantifies the relevance of accounting for mortality and the

frequency with which PALEt
θ comparisons are robust. In Section 4, we compare the

PALEt
θ indicator with other indicators proposed in the literature. In particular, we

provide a detailed comparison of PALEt
θ with the Generated Deprivation index. We

also contrast the empirical comparisons obtained with PALEt
θ and the Generated

Deprivation index. Section 5 concludes by discussing a key limitation of our indica-

tors, namely that PALEt
θ does not account for the unequal distribution of lifecycle

utilities when the same individuals cumulate poverty and premature mortality.

2 The PALE
t
θ indicator: theory

2.1 Stationary societies

A toy example

The poverty head-count ratio does not account for mortality. As a result, this indica-

tor can yield counterintuitive cross-society comparisons. The main reason is that the

head-count ratio does not account for the high intrinsic value of longevity. Indeed,

this indicator considers equally good two societies that have the same fraction of

poor individuals, even if individuals in one society have a lifespan twice as long as

the lifespan of their counterparts in the other society. The second reason is that mor-

tality can have an instrumental impact on poverty. As a result, ignoring mortality

can lead to paradoxical comparisons, as we illustrate by means of an example.

Consider two societies A and B, in which two individuals are born every year, one

in the poor dynasty and one in the rich dynasty. Individuals born in the poor (resp.

rich) dynasty remain poor (resp. non-poor) throughout their lives. The lifespan of

a rich individual is four years. The only difference between societies A and B is the

lifespan of a poor individual, which is one year in society A and three years in society

B. These societies are stationary in the sense that natality is constant over time

and the lifecycle outcomes of two individuals born in the same dynasty are the same.

In a stationary society, all poverty and mortality outcomes are replicated identically

every year, only the names of the affected individuals change.5

The relevant outcomes in societies A and B are summarized in Table 1. Consider

5Stationary societies are more formally defined in Appendix A.
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society A. In any arbitrary year t, one individual is poor (P) and four individuals

are non-poor (NP). The head-count ratio, which we denote by Ht, is thus 1/5.

Individuals born in the poor dynasty before year t are already dead (D) and the

same holds for individuals born in the non-poor dynasty before year t− 2.

Table 1: Comparison of stationary societies A and B.

Age in year t 0 1 2 3
Birth year t t− 1 t− 2 t− 3

Poor dynasty A P D D D
Non-poor dynasty A NP NP NP NP

Poor dynasty B P P P D
Non-poor dynasty B NP NP NP NP

When mortality is ignored, the poverty comparison of societies A and B reveals a

mortality paradox, since the head count ratio is larger in society B than in society A:

Ht(A) = 1/5 and Ht(B) = 3/7. The longer lifespan of the poor dynasty in society

B is thus recorded by Ht as a worsening. The problem is that, when comparing

societies A and B, Ht does not take into account the different lifespans of individuals

born in the poor dynasty.

Our proposed indicator, the poverty-adjusted life expectancy, solves both issues.

Indeed, this indicator accounts for the intrinsic value of longevity and avoids the

mortality paradox when comparing societies A and B.

Definition of PALEθ

The poverty-adjusted life expectancy index in year t is defined as

PALEt
θ = LEt(1 − θHt). (1)

where θ > 0 captures the normative trade-off between one year spent in poverty and

one year spent out of poverty, Ht denotes the poverty head-count ratio and LEt

denotes life expectancy at birth, i.e., LEt =
∑a∗−1

a=0

∏a−1
k=0(1− µt

k) where µt
k denotes

the mortality rate at age k observed in year t and a∗ denotes the maximal lifespan

than can be reached and thus µt
a∗−1 = 1. The larger the value of PALEt

θ, the better.

Two special cases are worth noting: PALEt
0 corresponds to life expectancy at birth

and PALEt
1 corresponds to the Poverty Free Life Expectancy, an indicator proposed

by Riumallo-Herl et al. (2018).

Our indicator accounts for the intrinsic value of longevity through life expectancy

at birth. Also, it avoids the mortality paradox when assuming θ ≤ 1. Indeed, PALEt
θ

is the weighted sum of a number of years spent in poverty and a number of years

spent out of poverty. Its mathematical expression can be written as

PALEt
θ = LEt(1−Ht) + (1− θ)LEt Ht.

For a newborn who expects to face throughout her life the poverty and mortality

observed in year t, the term LEt(1−Ht) captures the number of years she expects

to live out of poverty and the term LEt Ht captures the number of years she expects

to live in poverty (its “poverty expectancy”).6 Years out of poverty receive weight 1

6As we explain below, PALEt
θ

is not a forecast on the life of a newborn. Rather, its purpose is
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and years in poverty receive weight (1− θ). Consider again the example in Table 1.

As LEt(A) = 2.5 years and LEt(B) = 3.5 years, we get from last expression that

PALEt
θ(A) = 2 + (1− θ)0.5,

PALEt
θ(B) = 2 + (1− θ)1.5.

We have PALEt
θ(A) ≤ PALEt

θ(B) when (1− θ) ≥ 0 and thus when θ ≤ 1. In other

words, PALEt
θ avoids the mortality paradox for values of θ for which being poor is

no worse than being dead. This is more formally shown by Corollary 1 in Section 4.

Relationship with social welfare à la Harsanyi

We show that, in stationary societies, PALEt
θ corresponds to social welfare à la

Harsanyi under two assumptions. According to Harsanyi (1953), social welfare in

a given year t corresponds to the lifecycle utility expected by a newborn given the

outcomes observed in year t. Behind the veil of ignorance, the newborn faces a

lottery whereby she ignores whether and when she will be poor and for how long she

will live. When evaluating her life-cycle utility,7 she considers the life of a randomly

drawn individual in that society. Following the formulation of Jones and Klenow

(2016), her expected life-cycle utility is given by

EU t = Et

a∗−1∑

a=0

βau(ca)V
t(a), (2)

where β ∈ [0, 1] is the discount factor, ca ≥ 0 is consumption at age a, u is the period

utility function, V t(a) is the unconditional probability that the newborn survives to

age a given the mortality rates observed in year t, a∗ is the maximal lifespan one can

reach and the expectation operator Et applies to the uncertainty with respect to ca

given the distribution of consumption observed in year t. The period utility when

being dead is normalized to zero, i.e., u(D) = 0. As a result, mortality is valued

through its opportunity cost: death reduces the number of periods during which a

newborn can enjoy consumption.

For stationary societies, Eq. (2) simplifies into PALEt
θ under two assumptions.

Assumption A1 is to ignore discounting, i.e. β = 1. This assumption is necessary in

order to assign equal weights to all individuals, regardless of their age.8 Assumption

A2 is to transform the consumption of alive individuals into a binary variable, i.e.,

ca can be either being non-poor (NP ) or being poor (P ). This strong assumption

implies that the impact on period utility of consumption differences within these

two categories is ignored.9 We denote the period utilities associated to being poor,

to jointly assess the mortality and poverty taking place in a given year.
7The rationality requirements of decision theory provide a structure on admissible life-cycle

preferences. Rational preferences over streams of consumption have been axiomatized by Koopmans
(1960) and later generalized by Bleichrodt et al. (2008). Such preferences must be represented by a
discounted utility function, which aggregates these streams as a discounted sum of period utilities
U =

∑d
a=0 β

au(ca) where d ∈ N is the age at death, β ∈ [0, 1] is the discount factor, ca is
consumption at age a and u is the period utility function.

8Indeed, Eq. (2) equates a society’s welfare in a given period to the expected life-cycle utility of
individuals born in that period. Clearly, the expected life-cycle utility of newborns is related to the
society’s welfare in a given period only when one assumes that their expected lives reflect at each
age the outcomes observed for individuals of that age during the period considered. Discounting
with a factor less than one would give less weight to the outcomes of older individuals.

9Assumption A2 allows us to use the head-count ratio, the simplicity of which largely explains its
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non-poor and dead respectively by uP = u(P ), uNP = u(NP ) and uD = u(D).

Proposition 1 shows that, under A1 and A2, in any stationary society, PALEt
θ

corresponds to expected life-cycle utility as expressed in Eq. (2).

Proposition 1 (Correspondence between Harsanyi and PALEt
θ).

For any stationary society, assumptions A1 and A2 imply that

EU t

uNP

= LEt

(

1−
uNP − uP

uNP − uD
︸ ︷︷ ︸

θ

Ht

)

and thus PALEt
θ is ordinally equivalent to EU t.

Proof. The proof is provided in Appendix B.

Proposition 1 calls for several remarks. First, this result provides a mathematical

expression for parameter θ. Parameter θ captures the fraction of her period utility

that a non-poor individual loses when she becomes poor. This mathematical expres-

sion allows calibrating a value for parameter θ when selecting a particular period

utility function and computing its value for the typical consumption of the poor and

the non-poor, as we illustrate in Appendix C.

Second, Proposition 1 holds even when mortality is selective, that is when mortal-

ity rates affect differently poor and non-poor individuals, as in the case of societies A

and B. The reason why PALEt
θ is a simple normalization of EU t even when mortality

is selective is that EU t is a risk-neutral social welfare function. Being risk-neutral,

EU t is unaffected by the distribution across individuals of periods spent in poverty or

out of poverty. In the conclusion, we discuss the more general case of a social planner

who cares for unequal lifecycle utilities, when some individuals combine poverty and

short lifespans.10

Last but not least, societies are not stationary in practice. Indeed, societies

are regularly affected by transitory or permanent shocks to their mortality and

poverty. Crucially, non-stationarity breaks the equivalence between two alterna-

tive approaches for comparing societies A and B in Table 1. First, the “cohort”

approach evaluates a society from the lifetime outcomes of a cohort of individuals.

One can distinguish the “ex-ante” cohort approach, which considers the cohort born

in year t, from the “ex-post” cohort approach, which considers the cohort that dies

in year t. We illustrate the ex-ante approach using society A. The newborn in the

poor dynasity will live year t in poverty and die at the end of year t. In turn, the

newborn in the non-poor dynasity will live years t, t+1, t+2 and t+3 out of poverty

and die in year t + 3. The cohort approach thus considers outcomes happening in

different years. Second, the “population” approach evaluates a society only from

the outcomes observed in year t for its population alive in that year. For instance,

in society A, there is one poor individual born in t and four non-poor individuals

respectively born in t, t−1, t−2 and t−3. Regarding mortality, half of the newborns

and all individuals who are 3 years old die at the end of year t.

popularity (as suggested by Table 1 in Kraay et al. (2023)). The headcount ratio remains however
a crude indicator of poverty with well-known limitations (Sen, 1976).

10However, data on selective mortality is often not available. As a result, a social planner who
cares for unequal utilities may do no better than integrating mortality into poverty measurement
through indicators like PALEt

θ
.
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In a stationary society, both the cohort and the population approaches yield the

same evaluation. As Table 1 makes it clear, as well as representing an individual,

each of its cell is a unit of time. The cohort approach relies on units of time and

the population approach on individuals. For instance, for the non-poor dynasty, the

ex-ante cohort approach considers the four years that the individual born in year

t will live out of poverty. In contrast, the population approach considers the four

non-poor individuals who are alive in year t. The former approach thus considers

four units of time for a single individual while the latter approach considers one unit

of time for four different individuals. Thus, both approaches consider four units of

time out of poverty. One particularity of a stationary society is that the poverty

and mortality outcomes affecting the population that is alive in year t exactly reflect

the future lifecycle outcomes expected by a newborn in year t. As a result, both

approaches compare any two stationary societies in the same way.

2.2 Non-stationary societies

The cohort and population approaches yield different comparisons of non-stationary

societies. Even though life expectancy at birth (LEt) and social welfare à la Harsanyi

(EU t) have a cohort-like interpretation, they both follow the population approach

since they are both only based on outcomes observed in year t. To be policy relevant,

an index should account for the outcomes that take place in the year considered. For

indicators aimed at tracking progress, the cohort approach has the key disadvantage

of accounting for outcomes happening in different years. In the ex-post case, the

fact that a transiant poverty or mortality shock happened a few decades ago seems

of little relevance to evaluate well-being in year t. Similarly, in the ex-ante case, the

fact that a newborn might still be poor or might die prematurely in a few decades

after year t should also be considered irrelevant to year t’s evaluation.

The population approach faces one key difficulty under non-stationary societies,

namely how to aggregate the outcomes of individuals that have different ages. For

instance, how should we weight mortality rates associated with different ages? For

a stationary society, these mortality rates can be meaningfully weighed using the

current population pyramid because the current population pyramid perfectly reflects

these mortality rates. However, for a non-stationary society, the current population

pyramid might not reflect the current mortality rates.

The typical solution to this difficulty is to aggregate outcomes as-if the society

was stationary. This is for instance the solution underpinning the life expectancy

at birth indicator. LEt weights the age-specific mortality rates observed in year

t using a counterfactual population pyramid that perfectly reflects these mortality

rates. The interpretation of LEt is the average lifespan of a (counterfactual) cohort

of newborns that would be confronted throughout their lives to the mortality rates

observed in year t. Crucially, this interpretation should not be understood as a

forecast or a prediction for the average lifespan of a cohort born in year t. Indeed,

mortality rates are unlikely to remain constant after year t. Rather, LEt is simply

a meaningful way of weighting the mortality rates observed in year t. Hence, LEt

has a cohort-like interpretation but follows the population approach. Social welfare

à la Harsanyi also aggregates the outcomes observed in year t as-if the society was

stationary. It takes the perspective of a (counterfactual) cohort of newborns that

8



would be confronted throughout their lives to the mortality and poverty outcomes

observed in year t. Again, the expected welfare of this counterfactual cohort should

not be understood as a prediction, but only as a meaningful way of aggregating the

various poverty and mortality outcomes observed in year t.

PALEt
θ also aggregates outcomes as-if the society was stationary. However, under

non-stationary societies, PALEt
θ requires an additional condition to remain equiva-

lent to social welfare à la Harsanyi. This condition is that the poverty rates observed

in year t are the same for individuals of all ages. Formally, assumption A3 requires

that Etu(ca) = HtuP +(1−Ht)uNP for all a, i.e., Harsanyi’s newborn assumes that

the probability she will be poor at any given age corresponds to Ht. Proposition 2

shows that, under A1, A2 and A3, PALEt
θ corresponds to expected life-cycle utility

as expressed in Eq. (2) even in societies that are non-stationary.

Proposition 2 (Correspondence between Harsanyi and PALEt
θ).

Assumptions A1, A2 and A3 imply that

EU t

uNP

= LEt

(

1−
uNP − uP

uNP − uD
︸ ︷︷ ︸

θ

Ht

)

and thus PALEt
θ is ordinally equivalent to EU t.

Proof. The proof is provided in Appendix D.

Clearly, assumption A3 is unlikely to hold in practice, at least not exactly. Nev-

ertheless, indicator PALEt
θ = LEt(1 − θHt) has two main advantages. First, this

indicator has very limited data requirements. Indeed, it can be applied from the two

widely available indicators LEt and Ht. Second, it has a relatively simple interpre-

tation, namely the equivalent number of years of life spent out of poverty. Again, we

cannot interpret PALEt
θ as a projection or a forecast for the average lifecycle utility

of a cohort born in year t. However, the validity of PALEt
θ to evaluate a society

in period t does not rely on its capacity to correctly forecast the future. Indeed,

our objective is to aggregate the mortality and poverty observed in period t in a

meaningful manner. This aggregation should not depend on the future evolutions of

poverty and mortality.

We observe that PALEt
θ, like LEt, aggregates mortality rates based on a coun-

terfactual population pyramid. As we show in Section 4, this renders PALEt
θ very

reactive to permanent mortality shocks.

2.3 Robustness to normative parameter

We study the conditions under which comparisons by PALEt
θ are robust to all the

plausible values for parameter θ. As discussed above, these comparisons by PALEt
θ

avoids the mortality paradox when θ ≤ 1 (see Corollary 1). Yet, the comparison of

two societies with PALEt
θ may depend on the particular value assigned to θ ∈ (0, 1].

We show that a nontrivial part of these comparisons does not depend on the value for

θ even for some pairs not related by domination. In other words, there exist pairs of

societies that are robustly ranked by PALEt
θ, that is, in the same way for all values

of θ ∈ (0, 1] even though one is poorer but the other has higher mortality.

9



We illustrate this property in Figure 2. Without aggregation, domination alone

allows comparing society A with the northwest quadrant (where societies have more

poverty and more mortality) and the southeast quadrant (where societies have less

poverty and less mortality). For any value of θ, we can draw the iso-PALEt
θ curves

passing through A. The iso-PALEt
0 curve (associated to θ = 0) is a vertical line

since poverty has no welfare costs and life expectancy is the sole determinant of

welfare. However, the iso-PALEt
1 curve (associated to θ = 1) is not a horizontal

line. Therefore, the constraint θ ≤ 1 defines two additional areas for which welfare

can be robustly compared with that of society A. The iso-PALEt
θ curves associated

to intermediate values of θ ∈ (0, 1] are indeed all located in the area between the

iso-PALEt
0 curve and the iso-PALEt

1 curve. The area in the NE quadrant below the

iso-PALEt
1 curve yields a robustly higher social welfare than A, even though these

societies have a higher poverty than A. The area in the SW quadrant above the iso-

PALEt
1 yields an robustly lower social welfare than A, even though these societies

have a lower poverty than A. The size of these two new areas depends on the marginal

rate of substitution of PALEt
1 at A. For society A and PALEt

1, this marginal rate

of substitution is given by LEt(A)(1−Ht(A))
(LEt(A))2 . If LEt(A) = 70 and Ht(A) = 20%,

this marginal rate of substitution is equal to 0.011, meaning that one additional

year of life is exactly compensated by an increase in the head-count ratio Ht of 1.1

percentage points. These additional robust comparisons follow from (i) the fact that

expected life-cycle utility sums period utilities and (ii) the assumption that a year

of life spent in poverty is considered not worse than a year of life lost (i.e., θ ≤ 1,

which is uD ≤ uP ).

Figure 2: A and B are robustly ranked even though Ht(A) < Ht(B) and LEt(A) <
LEt(B).

As an illustration, Table 2 below reports the situation of Pakistan and Bangladesh

in 2021. Note that Life Expectancy can trivially be decomposed into Poverty Ex-

pectancy (LEt ∗Ht) and Poverty Fee Life Expectancy (LEt ∗ (1 −Ht)). Pakistan

has a lower headcount ratio than Bangladesh, but life expectancy is also lower in

Pakistan. Therefore, it is a priori difficult to rank those two societies. Assuming

that poverty and mortality remain unchanged, an individual born in Bangladesh can

10



expect to spend 4.3 years of his life in poverty and 67.2 years out of poverty. In

Pakistan, he can expect 2.7 years in poverty and 61.3 years out of poverty. Hence,

a newborn in Bangladesh can expect not only to spend more years in poverty, but

also more years out of poverty since the longer life expectancy there more than com-

pensates for the higher poverty rate. As a result, PALEt
θ ranks Bangladesh above

Pakistan for all θ ∈ (0, 1].

Table 2: An example of robust comparison: Pakistan and Bangladesh in 2021.

Headcount Life Poverty Poverty Free
ratio Expectancy Expectancy Life Expectancy

(LEt ∗Ht) LEt ∗ (1 −Ht) = PALEt
1

Pakistan 4.2% 64.0 2.7 61.3
Bangladesh 6.0% 71.4 4.3 67.2

In the absence of domination (NE and SW quadrants in Figure 2), ignoring

mortality, i.e., comparing two societies based on Ht, may lead to robustly erroneous

comparisons. This happens when the ranking provided by PALEt
θ is robust but

differs from the ranking provided by Ht. Proposition 3 describes the conditions

under which PALEt
θ comparisons are robust.

Proposition 3. (Robust comparisons with PALEt
θ)

(i) For any two societies A and B, PALEt
θ(A) ≤ PALEt

θ(B) for all θ ≤ 1 if and

only if

PALEt
0(A) ≤ PALEt

0(B) and PALEt
1(A) ≤ PALEt

1(B) (Condition C1)

(ii) There exist societies A and B for which PALEt
θ(A) ≤ PALEt

θ(B) for all θ ≤ 1

even though Ht(A) < Ht(B). These societies are such that Ht(A) < Ht(B) and

LEt(A) < LEt(B).

Proof. See Appendix K.

3 The PALEt
θ indicator: empirics

We now turn to data on poverty and life expectancy spanning the period 1990-2021.

The data come respectively from the World Bank’s Poverty and Inequality Platform

(World Bank, 2024) and the Global Burden of Disease Project (Global Burden of Dis-

ease Collaborative Network, 2021). Our sample consists of 121 countries: non high

income countries for which both poverty and mortality data are available. See Ap-

pendix N for the list of countries in the database as well as their descriptive statistics

for the year 2021. Appendix O presents a practictioner guide to the construction of

our index. In all our empirical exercises, the period t of reference is a year. Therefore

to alleviate the notation, we will refer to PALEθ instead of PALEt
θ.

3.1 A case study of South Africa

We first illustrate the relevance of our indices with the case of South Africa. Fig-

ure 3 reports the evolution of life expectancy, poverty rate and PALE1 for South

Africa from 1990 to 2021. From the perspective of poverty, the progress of South
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Africa is impressive, with poverty rates decreasing from 32% to 20% over the period.

However, life expectancy shows a different pattern. Following the AIDS epidemic,

life expectancy decreased from the mid 90s onwards, to revert back to the pre-AIDS

levels after 2017. Thus, in 2007, poverty rates are low, at 21%, but life expectancy is

also low, at only 52 years. How then do we compare South Africa in 2007 to South

Africa in 1990 when poverty rate was at 31% but life expectancy at 64 years old?

PALE1 indicates that deprivation is higher in 2007 than in was in 1990. Indeed,

PALE1 is equal to 43 years in 1990 as opposed to 41 years in 2007. We discuss in

Section 3.3 the sensitivity of the comparisons made under PALEθ to the choice of

θ.

Figure 3: South Africa Evolution of PALE1 and Life Expectancy, 1990-2021
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Reading: in 1990, life expectancy was 64 years, 32% of the population was living
below the poverty line and poverty adjusted life expectancy was 43 years.

3.2 Life expectancy and poverty in the World, 1990-2021

At the world level, Figure 4 presents the evolution of life expectancy, the headcount

ratio and PALEθ between 1990 and 2021. Throughout this period, life expectancy

increased from 64 to 71 but the decrease in poverty expectancy is even more spectac-

ular, from 38% in 1990 to less than 10% in 2021. This decrease in poverty combined

with an increase in life expectancy resulted in a large increase in PALE1, from 40 in

1990 to 64 years in 2021. For θ < 1, the corresponding PALEθ curves all lie between

life expectancy and the PALE1 curve. For example, PALE0.5 is higher in absolute

value (52 years in 1990). However, its evolution is much slower than that of PALE1:

from 1990 to 2021, PALE0.5 increased by 30% as opposed to 62% for PALE1. In-

deed θ = 1 implies that one year spent in poverty is equivalent to one year spent

dead. When instead one assumes that a year spent in poverty is equivalent to half a

12



Figure 4: Evolution of PALEθ and Life Expectancy, 1990-2021
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Reading: in 1990, Poverty-Adjusted Life Expectancy was about 40 years according
to PALE1 and 52 years according to PALE0.5.

year lost to death, life expectancy has more weight in PALE0.5 than in PALE1. As

the progress on life expectancy have been much slower than those against poverty,

PALE0.5 growth is slower.

Note that PALEθ can not be directly decomposed into each of its components.

However, it is possible to decompose its growth into the contribution of each of its

component. Indeed, the growth rate of PALEθ can be decomposed as follows:

∂PALEθ

∂t
= ǫLE ∗

∂LE

∂t
+ ǫH ∗

∂H

∂t

where ǫLE = 1 and ǫH = −θH
(1−θH) represent the elasticities of PALEθ to life ex-

pectancy and poverty, respectively. Figure 5 shows the share of the growth of PALEθ

explained by changes in life expectancy, from 1991 to 2021. First, note that the choice

of θ = 1 is conservative: the contribution of life expectancy to PALEθ is on average

16 percentage point smaller when θ = 1 than when θ = 0.5. Second, irrespective of

the precise value given to θ, the contribution of life expectancy is growing over time.

Life expectancy contributes on average to 21% (resp. 37%) of PALE’s growth from

1991 to 2004, as opposed to 40% (resp. 57%) from 2005 onwards. Even though mor-

tality has not decreased as much as poverty, changes in mortality play a substantial

role in the trend of PALEθ.
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Figure 5: Share of the growth of LE in the growth of PALE1, 1990-2021
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Reading: in 1991, the growth of life expectancy contributed to 17% of the growth of
PALE1 and to 34% to that of PALE0.5.

3.3 Improving on comparisons based on the headcount only

Our indices also allow for comparing countries in which life expectancy and poverty

evolve in opposite direction, as in the Pakistan-Bangladesh comparison presented in

Table 2 or in the comparison between the years 1990 and 2007 in South Africa (Figure

3). However, the choice of θ may not be innocuous in these comparisons. We now

focus on these cases. For these cases, we discuss the extent to which PALEθ offers

comparisons that are robust, that is, for which the ranking is not affected by the

choice of θ. Note that if the ranking proposed by PALEθ is robust to the choice of

θ, this implies that PALE0 and PALE1 yield the same ranking. In that case, since

PALE0 corresponds to life expectancy, a measure solely based on the headcount

provides a wrong ranking whenever life expectancy and headcount diverge (which is

the case we focus on). The main interest of robust comparisons is to measure the

extent to which PALEθ allows to improve on a ranking based on the headcount only:

in all these situations, irrespective of the value given to θ, the ranking under PALEθ

contradicts the poverty ranking.

Inter country comparisons

To what extent does PALEθ help in robustly ranking countries, as compared to a

simple headcount? Figure 6 reports the proportion of all country-pairs comparisons

whose ranking based on life expectancy and headcount ratio differs. There are 22%

of them.11 The share of these ambiguous cases for which PALEθ provides a ro-

bust answer, i.e., independently of the value given to θ, is equal to 39%. In other

11These are the only situations in which PALEθ can offer a different ranking than the headcount.
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words, 39% of these “ambiguous” cases are wrongly classified by the headcount ratio.

Note also that the share of ambiguous comparisons that our index unambiguously

solves increases over time, owing to the falling incidence of absolute poverty in many

countries.12

Figure 6: Evolution of the resolution of ambiguous inter-country comparisons, 1990-
2021
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Reading: in 1990, countries had on average 23% of ambiguous comparisons, out of
which at least 28% were unambiguously ranked by PALEθ.

Countries’ trajectories

We now turn to individual trajectories of all countries, such as the South African

case discussed earlier. For each country in our data, we computed the growth rate of

H and LE over each 5-years period. Figure 7 presents the evolution of the share of

ambiguous intra-country comparisons as well as the share that is robustly resolved

by PALEθ. Over the period, the share of ambiguous trajectories oscillates between

20 and 40% of all cases. The share of these cases that PALEθ ranks unambiguously

varies between between 20 and 40% for the period 1995-2005 up to 40 to 60% in the

2005-2015 period. As above, PALEθ corrects an increasing share of the rankings

proposed by the headcount. In Appendix P, we present each country’s evolution

for the period 1990-2021 and its resolution in a graphical format reminiscent of the

theoretical Figure 2.

12The falling incidence of absolute poverty implies that differences in H across countries in a given
year become, on average, smaller over time. This explains why the share of ambiguous comparisons
that our index unambiguously solves increases over time. This is easy to see when assuming that
the differences in LE across countries in a given year remain constant over time. Indeed, a smaller
difference in H can be “over-compensated” by a smaller difference in LE.
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Figure 7: Evolution of the resolution of ambiguous countries’ trajectories, 1990-
2021
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Reading: in the 1995, 36% of countries’ trajectories was ambiguous. Among these,
33% can be assessed with PALEθ.

4 PALE
t
θ VS other indicators

PALEt
θ is the first indicator to integrate mortality into poverty measurement in a

way that always provides intrinsic value to longevity and is immune to the mortality

paradox. We discuss similar indicators that integrate mortality with other dimensions

of well-being.

4.1 PALE
t
θ vs other indicators

The poverty-adjusted life expectancy is reminiscent of several indicators proposed in

health economics, like the quality-adjusted life expectancy (QALE) or the quality-

adjusted life year (QALY).13 Following Sullivan (1971), these two indicators account

for the quality and quantity of life, by weighting down the quantity of life for periods

with low quality. Propositions 1 and 2 show that they directly follow from the

expected life-cycle utility approach à la Harsanyi. Our index, however, accounts for

a major dimension of well-being other than health, which is poverty. In contrast,

these indicators in the health economics literature ignore consumption.

We now turn to indicators that combine mortality and consumption. Several of

these indicators do not dichotomize consumption and thus rely on a continuous con-

sumption variable. One prominent is the Human Development Index (HDI), which

aggregates mortality, consumption and education. Each of these three dimensions

13See for instance Whitehead and Ali (2010) for an economic interpretation of QALYs, or Heijink
et al. (2011); Jia et al. (2011) for applications of the QALE index to comparisons of health outcomes
across populations.
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is normalized and then they are equally weighted. Ravallion (2012) calls “mash-up”

this kind of aggregation that is not grounded in preference theory. Other indicators

follow the social welfare à la Harsanyi and are thus grounded in preference theory.

These indicators include proposals by Becker et al. (2005), Jones and Klenow (2016)

or yet Boarini et al. (2022). These indicators enjoy deep conceptual foundations, but

are little used in practice, perhaps due to their complexity. As illustrated in Table

1 of Kraay et al. (2023), simpler indicators are typically more used in practice than

more sophisticated and thus more complex ones.

We now move to indicators aggregating poverty and mortality. Typically, these

indicators consider binary consumption, i.e., individuals are either poor or non-poor

(A2). This simplification sacrifices most of the consumption information. Therefore,

these indicators are not ideal from a conceptual perspective. However, this is a

widespread practice for policymaking. Perhaps this simplification allows constructing

indicators that are easier to interpret.

An early index that integrates mortality into poverty is the Human Poverty Index

proposed by Watkins (2006). This index weighs the fraction of poor individuals (Ht)

with the fraction of individuals who die below the age of 40 years. This indicator

gives intrinsic value to longevity only below 40 years. Also, the HPI is an example

of “mash-up” index in the sense that its mathematical expression is ad-hoc. As a

result, the HPI does not consistently compare years of life lost and years of life spent

in poverty, as shown by Baland et al. (2021). The HPI thus falls victim to the

mortality paradox.

Our indicator differs from those proposed in the mortality paradox literature

(Kanbur and Mukherjee (2007); Lefebvre et al. (2013)), which aim at neutralizing

the instrumental impact mortality has on poverty measurement. However, these

indicators do not attribute intrinsic value to longevity (Decerf, 2023). These indi-

cators are sometimes unaffected when the lifespan of all individuals is multiplied

by a constant value. As a result, these indicators do not necessarily consider it an

improvement when the life-cycle utility of a population is increased through longer

lifespans. Another difference is that these indicators are based on counterfactual

consumption outcomes, namely the poverty status that dead individuals would have

enjoyed had they not died.14

The indicator most closely related to ours is the Generated Deprivation index

(GDt
θâ) proposed by Baland et al. (2021). Like the HPI, GDt

θâ accounts for the

intrinsic value of longevity below an age threshold that defines premature mortality.

Like PALEt
θ, GDt

θâ is immune to the mortality paradox for some range of values of

its parameter, at least below this age threshold. As we further discuss below, PALEt
θ

improves on GDt
θâ along the following dimensions. First, PALEt

θ also accounts for

intrinsic value of longevity and is thus also immune to the mortality paradox above

the age threshold. Second, GDt
θâ is less straightforward to interpret than PALEt

θ,

perhaps hampering its diffusion in public debates. Third, GDt
θâ responds to mortality

shocks with considerable inertia, reflecting long run adjustments in the population

pyramid. Inertia is not, in general, a desirable feature for poverty measures.

14For indicators like PALEt
θ

that attribute an intrinsic value of longevity, the poverty status that
a dead individual would have enjoyed is irrelevant.
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4.2 PALEt
θ vs GDt

θâ

In this section, we study the relationships between PALEt
θ and GDt

θâ.

One key difference between the two is that GDt
θâ is based on an additional nor-

mative parameter: the age threshold â below which death is considered premature.

For GDt
θâ, mortality has negative intrinsic value only to the extent that death oc-

curs below this age threshold. The rationale is that individuals whose death is too

premature should be considered lifespan deprived. Hence, mortality matters in so

far as it occurs below â, which defines a minimally acceptable lifespan. We call this

the “minimalist” view. This is in contrast to PALEt
θ, which gives negative intrinsic

value to all deaths, even to those occuring above â. We call this the “maximalist”

view.15

Minimalism, maximalism and the mortality paradox

We define GDt
θâ using an example provided in Table 3. This example is based on

the same two stationary societies A and B presented in Table 1. The only difference

is that we now consider an age threshold â = 3. There are now two types of dead

individuals. A dead individual is considered prematurely dead (PD) if she is born

less than 3 years before t and is considered dead (D) if she is born at least three

years before t. There are two prematurely dead individuals in society A.

Table 3: Comparison of stationary societies A and B under the minimalist view.

Age in year t 0 1 2 3
Birth year t t− 1 t− 2 t− 3

Poor dynasty A P PD PD D
Non-poor dynasty A NP NP NP NP

Poor dynasty B P P P D
Non-poor dynasty B NP NP NP NP

Individuals born in the non-poor dynasty do not spent any year in deprivation

while individuals born in the poor dynasty spend three years in deprivation. In

society A, these individuals spend one year in poverty and prematurely lose two

years. In society B, they spend three years in poverty.

Like PALEt
θ, GDt

θâ only depends on the outcomes observed in year t and thus

follows the population approach. For the poor dynasty in society A, GDt
θâ records

in year t a newborn who is poor and the same newborn who dies prematurely at the

end of year t. The newborn spends year t in poverty. Also, her death implies she

prematurely loses two years of life, namely t+1 and t+2, which she should have lived

before reaching age 3. GDt
θâ collects all the future years of life lost to premature

deaths in year t and attributes them to year t,

GDt
θâ =

Y LLt
â

N t + Y LLt
â

︸ ︷︷ ︸

mortality term

+ θ
N tHt

N t + Y LLt
â

︸ ︷︷ ︸
poverty term

, (3)

where N t denotes the number of alive individuals and Y LLt
â denotes the total number

15Note how these two views, while conceptually different, may in practice differ only parametri-
cally: a “minimalist” approach using a very large age threshold is in practice “maximalist”.
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of years of life prematurely lost due to premature mortality in year t

Y LLt
â =

â−2∑

a=0

N t
a ∗ µ

t
a ∗ (â− (a+ 1)),

where N t
a is the number of alive individuals who have age a and µt

a is the mortality

rate observed for individuals who have age a. Note that in society A, we have

Y LLt
â = 2. Observe that, because society A is stationary, Y LLt

â is equal to the

number of individuals who prematurely miss year t, namely the two individuals born

in the poor dynasty respectively in years t− 1 and t− 2. Again, this equality reflects

the fact that each cell in Table 3 represents an individual as well as a unit of time.16

The normative weight θ > 0 is the same parameter as for PALEt
θ. Under GDt

θâ, the

ratio 1/θ can be interpreted as the number of poverty years that are considered to be

equally bad as one year of life prematurely lost. When assuming θ ≤ 1, we require

that one poverty year cannot be worse than one year of life prematurely lost.

We are now equipped to contrast GDt
θâ and PALEt

θ. The main difference comes

from the use of the age threshold â, which has two implications. First, GDt
θâ does

not provide intrinsic value to longevity above â. To see this, consider a stationary

society C where all individuals in the poor dynasty live for 6 years and individuals in

the non-poor dynasty live for 8 years. Society C is thus obtained from society B by

doubling everyone’s lifespan. However, GDt
θâ does not record an improvement when

moving from society B to society C. We have indeed GDt
θ3(C) = GDt

θ3(B) because

Y LLt
â(C) = Y LLt

â(B) = 0, N t(C) = 2N t(B), and Ht(C) = Ht(B). Second, GDt
θâ

is still affected by the mortality paradox: any death of a poor individual occurring

above the age threshold â is recorded as an improvement. To see this, consider the

stationary society D whose only difference with society B is that the individuals

born in the poor dynasty lives for four periods. Hence, poor individuals live one

year longer in D than in B. We have GDt
θ3(D) = 4θ/8 and GDt

θ3(B) = 3θ/7, which

shows that GDt
θâ can improve with the death of a poor individual. Our discussion

illustrates that a maximalist indicator is required if one wishes to attribute intrinsic

value to longevity at all ages and avoid the mortality paradox at all ages.

Reaction to mortality shocks

There is a second more subtle difference between GDt
θâ and PALEt

θ. This difference

originates in the way in which these indicators aggregate mortality rates. In contrast

to PALEt
θ, GDt

θâ is not based on a counterfactual population pyramid (associated to

the mortality rates observed in year t), but rather on the actual population pyramid

in year t. This difference has implications for the way in which these indicators

respond to mortality shocks. This second difference thus kicks in when comparing

non-stationary societies.

To best illustrate this difference, we define a minimalist version of PALEt
θ, which

we call Expected Deprivation (ED). The only difference between EDt
θâ and GDt

θâ

lies in the way in which they aggregate mortality rates and this difference only

matters when comparing non-stationary societies. After a few results establishing

16Summing Y LLt
â

with Nt in the denominator may seem strange until one realizes that the two
terms capture years of human life, respectively prematurely lost or spent alive. Under this approach,
it is natural to compute the share of units of time spent in deprivation among the total amount of
units one ought to live out of deprivation.
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these relationships between EDt
θâ, GDt

θâ and PALEt
θ, we use simulations to illustrate

how EDt
θâ and GDt

θâ differ when reacting to permanent mortality shocks.

Definition of EDt
θâ

We define a new indicator – the expected deprivation index (EDt
θâ) – which gen-

eralizes PALEt
θ under a minimalist view. Under this view, one should only give a

(negative) intrinsic value to the years of life lost before reaching a minimal age thresh-

old â. EDt
θâ accounts for mortality through the lifespan gap expectancy (LGEt

â),

which measures the number of years that a newborn expects to lose prematurely.17

LGEt
â =

â−1∑

a=0

(â− (a+ 1)) ∗ µt
a ∗

a−1∏

k=0

(1− µt
k),

We illustrate in Figure 8 the close connection between LGEt
â and LEt. The figure

depicts for each age the fraction of newborns that are expected to still be alive at age

a, assuming again that age-specific mortality rates are fixed. These fractions define a

normalized counterfactual population pyramid. Indeed, the population pyramid of a

stationary society confronted to these fixed mortality rates is obtained by multiplying

these fractions by the fixed number of newborns.18 In the left panel of Figure 8, LEt

is proportional to the area below the normalized population pyramid. By contrast,

LGEt
â is equal to the area between this normalized population pyramid and the

age threshold. The right panel illustrates the property that, for large enough age

thresholds, LGEt
â is the complement of LEt. Formally, when â ≥ a∗, where a∗ is

the maximal lifespan, we have LGEt
â = â− LEt.

Figure 8: Life Expectancy and Lifespan Gap Expectancy

Note: In the Left panel, the light green area below the normalized “stationary”
population pyramid is equal to LEt and the dark pink area is equal to LGEt

â.

The expected deprivation index (EDt
θâ) aggregates the poverty and mortality ob-

served in year t by taking the perspective of a newborn who expects to be confronted,

throughout her life-cycle, to the poverty and mortality prevailing at the time of her

17LGEt
â

is a particular version of the Years of Potential Life Lost, an indicator used in medical
research in order to quantify and compare the burden on society due to different causes of death
(Gardner and Sanborn, 1990).

18In a stationary society, the current population pyramid can be obtained by successively applying
the current age-specific mortality rates to each age group.
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birth.

EDt
θâ =

LGEt
â

LEt + LGEt
â

︸ ︷︷ ︸

mortality term

+ θ
LEt ∗Ht

LEt + LGEt
â

︸ ︷︷ ︸
poverty term

, (4)

with the same parameters θ > 0 and â ≥ 2. The two normative parameters θ and â

jointly define the respective importance attributed to poverty and mortality.19

Both terms have the same denominator, which measures a normative lifespan

corresponding to the sum of LEt and LGEt
â.

20 The numerator of each term mea-

sures the expected number of years characterized by one of the two dimensions of

deprivation, again assuming that the society is stationary. The numerator of the

mortality term measures the number of years that a newborn expects to lose pre-

maturely (when observing mortality in the period) given the age threshold, â. The

numerator of the poverty term measures the number of years that a newborn expects

to spend in poverty.

Relationship between EDt
θâ and PALEt

θ

We show that PALEt
θ is a version of EDt

θâ that encapsulates the maximalist view.

Indeed, as stated in Proposition 4, EDt
θâ ranks societies exactly in the same way (up

to a sign) as PALEt
θ as long as its age threshold â is at least as large as the maximal

lifespan a∗. For such values, the age threshold is not binding, and all deaths become

relevant in terms of deprivation.

Proposition 4 (EDt
θâ generalizes PALEt

θ).

For all â ≥ a∗ we have PALEt
θ = â(1 − EDt

θâ), which implies that, for any two

societies A and B,

PALEt
θ(A) ≥ PALEt

θ(B) ⇔ EDt
θâ(A) ≤ EDt

θâ(B).

Proof. See Appendix H.

When the age threshold is binding (smaller than the maximal age a∗), the rank-

ings obtained under EDt
θâ may not correspond to the rankings obtained under

PALEt
θ. In Appendix I, we contrast the impact of mortality shocks on PALEt

θ

and EDt
θâ.

Relationship between EDt
θâ and GDt

θâ

Proposition 5 shows that EDt
θâ also compares stationary societies in the same way

as GDt
θâ.

Proposition 5 (EDt
θâ and GDt

θâ are identical in stationary societies).

For any stationary society, we have EDt
θâ = GDt

θâ

Proof. See Appendix E.
19Parameter θ determines the relative weights of being dead or being poor for one period. In

contrast, parameter â determines the number of periods for which “being prematurely dead” is
accounted for. Hence, â affects the relative size of the deprivation coming from mortality versus the
deprivation coming from poverty.

20This normative lifespan can be interpreted as the (counterfactual) life expectancy at birth that
would prevail if all premature deaths were postponed to the age threshold. It is at least as large as
LEt, and corresponds to LEt if the age threshold is equal to 1.
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Escaping the mortality paradox with PALEt
θ

As observed above, GDt
θâ is not immune to the mortality paradox. A paradox-free

index should record an improvement when a stationary society is obtained from

another stationary society by an increment to the lifespan of a poor person.21 For

instance, in Table 3, stationary society B is obtained from stationary society A by

two successive increments to the lifespan of individuals in the poor dynasty.

Definition 1 (Paradox-free).

M t
θâ ∈ {EDt

θâ, GDt
θâ} is paradox-free if for any two stationary societies A and B

such that B is obtained from A by an increment to the lifespan of a poor person we

have M t
θâ(A) ≥ M t

θâ(B).

Proposition 6 identifies the values for the two parameters θ and â under which

EDθâ is Paradox-free. First, all deaths should matter, which implies that the age

threshold â should be at least as large as the maximal lifespan a∗. Second, one year

of life prematurely lost should be at least as bad as one year of life spent in poverty,

which implies that θ ≤ 1 and thus uNP − uP ≤ uNP − uD.

Proposition 6 (EDt
θâ and the mortality paradox).

M t
θâ ∈ {EDt

θâ, GDt
θâ} is Paradox-free if and only if θ ≤ 1 and â ≥ a∗.

Proof. See Appendix J.

An immediate corollary for Propositions 4 and 6 follows: the only way for EDt
θâ

to be Paradox-free is to be ordinally equivalent to PALEt
θ with θ ≤ 1.

Corollary 1 (PALEt
θ and the mortality paradox).

EDt
θâ is Paradox-free if and only if EDt

θâ is ordinally equivalent (up to a sign) to

PALEt
θ with θ ≤ 1.

Corollary 1 shows that the mortality paradox provides a justification for PALEt
θ.

In Appendix L, we study the conditions under which comparisons by EDt
θâ are

robust to the plausible values for its parameters.

Simulated reactions to permanent mortality shocks

We now discuss more systematically the dynamic differences between EDt
θâ and

GDt
θâ. EDt

θâ and GDt
θâ rank non-stationary societies differently. A stationary soci-

ety becomes non-stationary after it is affected by a poverty shock, a mortality shock

or a shock affecting both poverty and mortality. For our purposes, we can ignore

poverty shocks. The reason is that both EDt
θâ and GDt

θâ account for poverty in

the same way, namely through Ht. As a result, they both account for the dynamic

evolution of poverty through the way in which this evolution affects Ht. In other

words, the difference between EDt
θâ and GDt

θâ in non-stationary societies comes from

how they aggregate mortality rates. GDt
θâ records the number of years prematurely

21We define more formally the notion of an increment to the lifespan of a poor person in this
footnote. Following our formal framework presented in Appendix A, the life of an individual i is a
list of poverty statuses li = (li0, . . . , lidi ) that she experiences between age 0 and the age at which
she dies di ∈ {0, . . . , a∗ − 1}, where lia ∈ {NP,P}. We say that stationary society B is obtained
from stationary society A by an increment to the lifespan of a poor person when both societies have
the same natality, lAi = lBi for all individuals i except for some individual j such that dBj = dAj +1,

lAja = P for all a ≤ dAj and lBja = P for all a ≤ dBj .
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lost over all premature deaths actually taking place in year t. EDt
θâ also counts the

number of years prematurely lost but, instead of being computed on the actual pop-

ulation pyramid, EDt
θâ uses a counterfactual population pyramid, which is the one

that would prevail in a stationary society characterized by the age-specific mortality

rates observed in the period.

A major implication of this difference is that EDt
θâ is more reactive to mortality

shocks than GDt
θâ. A toy example in Appendix F provides an illustration of this

property for a transitory mortality shock. In the remainder, we focus on permanent

mortality shocks, which are more relevant for policymaking. Thus, consider a perma-

nent mortality shock. The population dynamics is such that a transition phase sets

in during which the population pyramid slowly adjusts to the new mortality rates.

This transition stops when a new stationary population pyramid is reached, typically

after several decades (up to a∗ periods). GDt
θâ records each step of this transition

and therefore exhibits inertia in its response to a permanent mortality shock.22 By

contrast, EDt
θâ immediately refers to the new stationary population pyramid and

thus disregards the inertia caused by these transitory demographic adjustments.

We illustrate this difference by simulating the consequences of a permanent mor-

tality shock on a stationary population. For simplicity, we assume constant natality

rates and no poverty. The age threshold is 50 and the maximal age is 100. Before

the shock, the population pyramid is consistent with a mortality vector such that,

at each age before 100, the mortality rate is equal to 2%. Figure 9 illustrates the

relative evolution of the two indices for two types of permanent shocks: (1) the mor-

tality rate falls from 2 to 1% only at age 40 and (2) the mortality rate falls from 2

to 1% only at age 5.

The upper graph illustrates the consequences of the mortality shock at age 40 and

the bottom graph of the mortality shock at age 5. The two indices evolve differently

over the transition period. Both GDt
θâ and EDt

θâ jump discretely in the period

of the shock. GDt
θâ makes a partial jump and continues to slowly adjust to the

induced changes in the population pyramid. In the long run, when society reaches

stationarity, the two indices are again equal, once the shock is fully accounted for.

EDt
θâ directly jumps to the long run equilibrium value. These simulations indicate

that EDt
θâ is more reactive than GDt

θâ to a permanent mortality shock.

The bottom graph illustrates that the behavior of GDt
θâ during the adjustment

periods needs not be monotonic, as observed in Baland et al. (2021). This non-

monotonicity might be confusing and makes interpretation of the trend in GDt
θâ less

straightforward than the trend in EDt
θâ. There is thus another benefit of aggregating

mortality rates through a counterfactual population pyramid, as done in PALEt
θ

and EDt
θâ, namely that it simplifies the interpretation of its trend after permanent

mortality shocks.

Note finally that GDt
θâ and EDt

θâ also differ in their axiomatic properties. Ba-

22For instance, assume that society A (see Table 3) undergoes a permanent mortality shock such
that society A is subjected to her mortality vector in all years before t, namely (µA

0 , µA
1 , µA

2 , µA
3 ) =

(1/2, 0, 0, 1), but from year t onwards society A is subjected to the mortality vector of society
B, namely (µB

0 , µB
1 , µB

2 , µB
3 ) = (0, 0, 1/2, 1). There is a mechanical adjustment to the population

pyramid, such that only two poor individuals live in year t + 1. Only in year t + 2 does the
population pyramid reach the new equilibrium, with three poor individuals. The inertia of GDt

θâ
may be deemed undesirable because it may complicate the analysis. Baland et al. (2021) show that
the mechanical adjustments following a permanent mortality shock may lead to a non-monotonic
trend in GDt

θâ
.
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Figure 9: Simulation of permanent mortality shocks on a stationary population
(â = 50 and Ht = 0)

land et al. (2021) show that GDt
θâ is essentially the only index decomposable into

subgroups to compare stationary societies in a way that satisfies some basic prop-

erties. As a result, EDt
θâ cannot be decomposable into subgroups.23 This is no

surprise given that EDt
θâ is based on life expectancy, which cannot be decomposed

into subgroups. In Appendix G, we also show that EDt
θâ is the only index that is

independent on the actual population pyramid (thereby avoiding the inertia associ-

ated to its mechanical adjustments after mortality shocks) and compares stationary

populations in a way that respects basic properties.

4.3 Empirics

How often, in practice, do GDθâ, EDθâ and PALEθ provide different rankings of

countries? Figure 10 presents the degree of agreement between these indices for inter

country comparisons for several definitions of the parameters θ and â. Figure 10

focuses on ambiguous cases, when the headcount ratio and life expectancy provide

a different ranking. The degree of agreement between GD1,70, ED1,70 is extremely

high, at around 93% throughout the period. By Proposition 5, these 7% cases of

disagreement between GD1,70 and ED1,70 can entirely be attributed to the fact that

the societies being compared are not stationary. These 7% of remaining cases are

due to the different manner in which they react to mortality shocks, as discussed

above. Note also how the agreement between GD1,â, ED1,â is almost identical with

another age threshold â, such as 50. Comparing Figures 10a and 10b, we see that the

23In other words, if decomposability into subgroups is seen as a key property, one should use GDt
θâ

.
Indeed, this index yields the same ranking as EDt

θâ
in stationary populations. In those populations,

GDt
θâ

thus yields the same ranking as PALEt
θ

when all deaths are normatively relevant (â ≥ a∗).
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level of agreement between GDθâ and EDθâ, while still high, decreases when moving

from θ = 1 to θ = 0.5. Indeed, the only difference between our indicators is the

way in which they incorporate mortality. The larger θ, the lower the relative weight

given to mortality compared to poverty, and the closer the diagnostics proposed by

the three indexes.

Now comparing the diagnostics of GDθâ and EDθâ with that of PALEθ, the

agreement, while still very high, is much lower, and decreasing over time. The

disagreements between PALEθ and EDθ70 arise because the former accounts for

all deaths while the latter does not account for the deaths occurring above the age

threshold (Proposition 4). Proposition 6 shows that this difference between PALEθ

and EDθ70 is precisely the reason why the former avoids the mortality paradox while

the latter does not. As a result, we can attribute the disagreements between PALEθ

and EDθ70 to the fact that PALEθ avoids the mortality paradox. Together, the

disagreements between PALEθ and GDθâ in Figure 10 are mostly due to the fact

that PALEθ avoids the mortality paradox. The role of non-stationarity plays a more

limited role in these disagreements.

We emphasize that, the smaller the age threshold â, the more numerous the dis-

agreements between PALEθ and GDθâ. When â switches from 70 to 50, agreement

between the three indices moves from 82% to 73% on average for θ = 1 (Figure

10a). The smaller the age threshold â, the more GDθâ and EDθâ are exposed to

the mortality paradox, the more numerous the disagreements with PALEθ, which is

immune from it. Remember how the agreement between GDθâ and EDθâ remains

similar no matter the level of â. This suggests that the driving force behind the dis-

agreement between the three indices originates in the mortality paradox rather than

non-stationarity. The decreasing trend in agreement between PALEθ and the other

two indices is due to the increasing life expectancy trend. As life expectancy increases

throughout the world, a larger share of deaths occurs above â and are ignored by

GDθâ and EDθâ so that their diagnostic differs more and more from PALEθ. The

increasing agreement during the COVID pandemic reflects the opposite mechanism:

as life expectancy decreased, more deaths occured prior to â and were therefore ac-

counted for by all indices.

As GDθâ and EDθâ offer similar diagnostics in our data, the use of any of these two

indices may be driven by the specific needs of researchers and practitioners. Indeed,

EDθâ has the benefit of a relatively simple interpretation. GDθâ, however, is decom-

posable across sub-groups, which may be a useful property for analytical purposes.

Finally, PALEθ offers the advantage of not suffering from the mortality paradox

and of having the most straightforward interpretation. Its diagnostic, however, dif-

fers from that of GDθâ and EDθâ. Its use will be driven by the conception of lifespan

deprivation preferred by researchers and practitioners: should all deaths matter or

should only the deaths occuring below an age threshold be taken into account?

5 Concluding remarks

An important limitation of the two indices proposed in this paper, PALEt
θ and EDt

θâ,

is that they account for the distribution of outcomes “dimension-by-dimension”. More

precisely, they account for the distribution of quality of life and for the distribution of
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Figure 10: Agreement between GDθâ, EDθâ and PALEθ
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quantity of life, but not for the distribution of life-cycle utilities. Indeed, our indices

are insensitive to the allocation of years of life prematurely lost between the poor and

the non-poor. This allocation may however have implications for the distribution of

life-cycle utilities. When poor individuals die early, they cumulate low achievements

in the two dimensions and the difference between their life-cycle utility and that of

non-poor individuals increases.

Accounting for the distribution of lifecycle utilities requires data that are typically

not available. The necessary data include not only information on the correlation

between poverty and premature mortality, but also information on mobility in and

out of poverty. When such data is not available, PALEt
θ and EDt

θâ can be used as a

second-best solution, as they improve over the widespread practice of entirely ignor-

ing the impact of mortality on longevity. This is particularly relevant for societies

in which premature mortality is highly selective, i.e., for which premature mortal-

ity disproportionately affects poorer individuals. In those societies, the premature

mortality term of EDt
θâ essentially captures these negative outcomes.

If one cares about the distribution of life-cycle utilities and the necessary data

is available, our indicators would need to be adjusted. Let us define as “life-cycle

poor” the individuals whose life-cycle utility is smaller than that of a reference life,

e.g., a life characterized by a lifespan of 40 years with no period of poverty. One

index combining mortality and poverty that would account for the distribution of

life-cycle utilities is the expected fraction of newborns who will be “life-cycle poor”,

again assuming constant poverty and mortality.24

Our paper calls for future research on the value that the normative parameter

θ should take. Its mathematical expression based on social welfare à la Harsanyi

allows calibrating its value, as we show in Appendix C. However, the calibrated

values are highly sensitive to the parametric values selected for the period utility

function. Survey-based estimates for θ may provide a firmer base for narrowing the

plausible range of values for this central parameter.
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Appendices

A Notation and definition of a stationary society

We present here the formal notation used for the proofs.

There is a discrete set of periods {. . . , t − 1, t, t + 1, . . . }. In each period, some

individuals are born (at the beginning of the period) and some individuals die (at the

end of the period). All alive individuals are assigned a consumption status for the

period (P or NP ) . We define the life of an individual i as the list of consumption

statuses li = (li0, . . . , lidi
) she enjoys between age 0 and age di ∈ {0, . . . , a∗ − 1} at

which she dies, where lia ∈ {NP,P} for all a ∈ {0, . . . , di}. The set of lives is thus

L = ∪d∈{0,...,a∗−1}{NP,P}d+1.

The number of newborns in period t is denoted by nt. The profile of lives for

the cohort born in t is denoted by Ct = (li)i∈{1,...,nt}, where {1, . . . , nt} is the set of

newborns in t. For any i ∈ {1, . . . , nt}, li0 is the consumption status i enjoys in t,

li1 is the consumption status i enjoys in t+ 1, etc.

Let nt(a) denote the number of individuals born in period t who are still alive

when reaching age a. In particular, we have nt(0) = nt. Let pt(a) denote the

number of individuals born in period t who are poor at age a, with pt(a) ≤ nt(a).

By definition, the probability that an individual born in t survives to age a is given

by V t(a) = nt(a)
nt

, and the conditional probability that an individual born in t will be

poor when reaching age a is πt(a) =
pt(a)
nt(a)

. We denote the probability distribution

on the set of lives that Ct implicitly defines by Γt : L → [0, 1], with
∑

l∈L Γt(l) = 1.

In period t, we cannot observe the full profile of lives for the cohort born in

t. The only elements of Ct that we observe in period t are nt(0), pt(0) and nt(1).

However, we also have information about the profile of lives of the cohorts born before

t. Formally, let a society St be the list of profiles of lives for all cohorts born during

the a∗ periods in {t − (a∗ − 1), . . . , t}, i.e. St = (Ct−a∗+1, . . . , Ct). In period t, we

observe (i) the number N t of individuals who are alive in t:

N t =

a∗−1∑

a=0

nt−a(a),

(ii) the fraction Ht of alive individuals who are poor in t:

Ht =

∑a∗−1
a=0 pt−a(a)

∑a∗−1
a=0 nt−a(a)

,

and (iii) the age-specific mortality vector µt = (µt
0, . . . , µ

t
a∗−1) in period t where for

each a ∈ {0, . . . , a∗ − 1} we have

µt
a =

nt−a(a)− nt−a(a+ 1)

nt−a(a)
,

with µt
a∗−1 = 1 (by definition of a∗).

The particularity of stationary societies is to have their natality, mortality and

poverty constant over time, so that outcomes in a given period t are replicated

over the next period t + 1. The only change between t and t + 1 is the identity of

30



individuals who face these outcomes. More formally, a society is stationary if both

the distribution of lives and the size of generations are constant over the last a∗

periods.

Definition 2 (Stationary Society).

A society St is stationary if, at any period t′ ∈ {t− a∗ + 1, . . . , t}, we have

• Γt′ = Γt (constant distribution of lives),

• nt′ = nt (constant size of cohorts).

It follows from this definition that a stationary society St is such that nt(a) =

nt−a(a) and pt(a) = pt−a(a) for all a ∈ {1, . . . , a∗ − 1}.25

B Proof of Proposition 1

The proof is based on Lemma 1, which shows that, in a stationarity society, the

poverty and mortality observed in a given period completely reflects the lifecycle

outcomes of newborns.

Lemma 1. If society St is stationary, then

V t(a) = Πa−1
k=0(1− µt

k) for all a ∈ {0, . . . , a∗ − 1}, (5)

N t = nt ∗ LE
t, (6)

N t ∗Ht = nt ∗
a∗−1∑

a=0

V t(a)πt(a). (7)

Proof. We first prove Eq (5). As St is stationary, we have nt(k) = nt−k(k) for all

k ∈ {1, . . . , a∗−1} and nt(k+1) = nt−k(k+1) for all k ∈ {0, . . . , a∗−2}. Therefore,

we have for all a ∈ {1, . . . , a∗ − 1} that

V t(a) =
nt(a)

nt

,

= Πa−1
k=0

nt(k + 1)

nt(k)
,

= Πa−1
k=0

nt−k(k + 1)

nt−k(k)
,

= Πa−1
k=0(1− µt

k).

We then prove Eq (6). As St is stationary, we have nt(a) = nt−a(a) for all a ∈

25Clearly, a constant distribution of lives is not sufficient for these equalities, one also needs a
constant size of cohorts.
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{1, . . . , a∗ − 1}. Recalling Eq (5) and V t(a) = nt(a)
nt

, we can successively write

LEt =
a∗−1∑

a=0

Πa−1
k=0(1 − µt

k),

=

a∗−1∑

a=0

V t(a),

=

∑a∗−1
a=0 nt(a)

nt

,

=

∑a∗−1
a=0 nt−a(a)

nt

,

= N t/nt.

Finally, we prove Eq. (7). As St is stationary, we have pt(a) = pt−a(a) for all

a ∈ {1, . . . , a∗ − 1}. Given that πt(a) =
pt(a)
nt(a)

and V t(a) = nt(a)
nt

, we can successively

write

Ht =

∑a∗−1
a=0 pt−a(a)

∑a∗−1
a=0 nt−a(a)

,

=

∑a∗−1
a=0 pt(a)

Nt

,

=

∑a∗−1
a=0 πt(a)V

t(a)nt

N t
.

We use Lemma 1 to prove Proposition 1.

The assumption that individuals only enjoy binary consumption statuses implies

that Etu(ca) = πt(a)uP + (1− πt(a))uNP where uNP = u(NP ) and uP = u(P ). By

Eq. (5), life expectancy at birth can be written as LEt =
∑a∗−1

a=0 V t(a). We can thus

rewrite Eq. (2) as

EU t = uNPLE
t − (uNP − uP )

a∗−1∑

a=0

V t(a)πt(a). (8)

The result follows directly when substituting Eq. (6) and (7) into Eq. (8).

C Calibrating values for θ

Proposition 1 shows that θ = uNP−uP

uNP
, where uP and uNP respectively denote the

period utility of being poor and being non-poor (and the utility of being dead is

normalized to zero). Consider the constant elasticity of substitution period utility

function defined as

u(c) =
c1−ǫ − ĉ1−ǫ

1− ǫ
, (9)

where ĉ denotes the “subsistence” consumption level, for which u(ĉ) = 0, and ǫ is

the coefficient of relative risk aversion that captures the curvature of utility function

u. A parametric value for θ requires defining the representative consumption for

the (consumption) poor and non-poor statuses such that uP = u(cpoor) and uNP =
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u(cnon−poor). Typically, cpoor and cnon−poor could respectively be defined as mean

or median consumption among the poor and non-poor.

Parametric values for θ are sensitive to the values selected for the parameters ĉ

and ǫ. We illustrate this by providing values for 1/θ for India in 2019 for different

values of these parameters. We define poverty using the the International Poverty

Line, whose value is $ 2.15 per person per day (2017 PPPs). We assume that cpoor

and cnon−poor are defined as mean consumption among the poor and non-poor, which

we extract from the Poverty and Inequality Platform from the World Bank.

Table 4: Parametric values for 1/θ for India in 2019 using the International Poverty
Line.

ĉ ĉ ĉ ĉ
0.5 0.75 1.0 1.25

($ a day) ($ a day) ($ a day) ($ a day)
ǫ 2.5 7.8 4.1 2.6 1.8
ǫ 2.0 4.7 3.0 2.1 1.6
ǫ 1.5 3.0 2.2 1.7 1.4
ǫ 1.0 2.1 1.7 1.5 1.3

Note: According to the Poverty and Inequality Platform, mean consumption in India in 2019 was
$ 5.13 per person per day (2017 PPPs). For the International Poverty Line, mean consumption
among the poor is $ 1.75 and mean consumption among the non-poor is $ 5.51. The utility function
considered is CES. 1/θ can be interpreted as the number of years spent in poverty yielding the same
well-being loss as one year of life lost.

D Proof of Proposition 2

From assumption A3 we have that Etu(ca) = HtuP + (1 −Ht)uNP for all a. Thus,

the assumed probability to be poor at age a is πt(a) = Ht for all a. We thus get

from Eq. (8) that

EU t = uNPLE
t − (uNP − uP )H

t

a∗−1∑

a=0

V t(a). (10)

Social welfare à la Harsanyi computes the unconditional probability to survive to

age a, denoted by V t(a), by considering fixed mortality rates equal to those observed

in year t. This implies that
∑a∗−1

a=0 V t(a) = LEt and the result directly follows.

E Proof of Proposition 5

The proof builds on the framework presented in Appendix A.

We prove that GDt
θâ(St) = EDt

θâ(St) for any stationary society St. By definition,

GDt
θâ =

Y LLt
â

N t + Y LLt
â

+ θ
N tHt

N t + Y LLt
â

.

As society St is stationary, Lemma 1 applies and N t = ntLE
t (Eq. (6)). Substituting

this expression for N t into the definition of GDt
θâ yields the desired result, at least

if we have Y LLt
â = ntLGEt

â, which remains to be shown. By definition, we have
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nt−a(a) = N t
a and thus

Y LLt
â =

â−2∑

a=0

nt−a(a) ∗ µ
t
a ∗ (â− (a+ 1)).

As society St is stationary, Lemma 1 applies and we have nt−a(a)
nt

=
∏a−1

k=0(1−µt
k)

(Eq. (5)). Substituting this expression for nt−a(a) into the definition of Y LLt
â gives:

Y LLt
â = nt

â−2∑

a=0

(â− (a+ 1)) ∗ µt
a ∗

a−1∏

k=0

(1 − µt
k),

which shows that Y LLt
â = ntLGEt

â (recall that â− (a+1) = 0 when a = â− 1), the

desired result.

F EDt
θâ and GDt

θâ under a transitory mortality shock

We illustrate the difference between EDt
θâ and GDt

θâ in their reaction to a transitory

mortality shock with the help of a toy example. Consider a population with a fixed

natality nt(0) = 2 for all periods t. At each period, all alive individuals are non-

poor, implying that Ht = 0. For all t 6= 0, we assume a constant mortality vector

µt = µ∗ = (0, 1, 1, 1), so that before t each individual lives exactly two periods. Let

us assume â = 4, so that an individual dies prematurely if she dies before her fourth

period of life. Before period t = 0, the population pyramid is stationary, and the

two indices are equal to 1/2 because there is no poor and individuals live for two

periods instead of four. Consider now a transitory mortality shock in period 0, such

that half of the newborns die after their first period of life: µ0 = (1/2, 1, 1, 1). The

population pyramid in period 1 is thus different than the population pyramid in all

periods t 6= 1. The population pyramid returns to its stationary state in period 2,

after a (mechanical) transition in period 1. This example is illustrated in Figure 11.

Figure 11: Response of GDt
θâ and EDt

θâ to a transitory mortality shock in t = 0.
The years prematurely lost are shaded.

Consider first GDt
θâ. In period 0, the actual population pyramid does not reflect
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the new mortality vector µ0. Two one-year old individuals die in period 0, each losing

two years of life. Yet, the transitory mortality shock implies the premature death of

one newborn, which leads to the loss of three additional years of life. There are thus

7 years of life prematurely lost in period 0, and GDt=0
θâ takes value 7/11. In period

1, the population pyramid is different than in other periods because of the death of

one newborn in period 0. The mortality vector reverses µ1 = µ∗ = (0, 1, 1, 1), which

implies that nobody dies except the only one-year old individual. As this one-year

old loses two years of life, we have that GDt=1
θâ is equal to 2/5. In period 2, both the

population pyramid and the mortality vector are back to their stationary values and

so does GDt=2
θâ .

We now turn to EDt
θâ. In period 0, EDt=0

θâ considers the counterfactual popula-

tion pyramid associated to mortality vector µ0. As a result, EDt=0
θâ is equal to 5/8.

Indeed, EDt=0
θâ focuses on the newborn and the one-year old who die prematurely

in the counterfactual population pyramid, ignoring that there are two one-year old

dying in the actual population pyramid in period 0. (The presence of two one-year

old individuals in period 0 is a legacy of the past mortality vectors equal to µ∗.)

In period 1, EDt=1
θâ considers the counterfactual population pyramid associated to

mortality vector µ∗, which corresponds to the actual population pyramids in period

t 6= 1. As a result, EDt=1
θâ reverses to its stationary value for µ∗ equal to 4/8.

The transitory mortality shock only takes place in period 0. This is directly

reflected in the evolution of EDt
θâ, which registers a worsening in period 0 and then

reverts back to its long run value in period 1 when the mortality vector reverses to

µ∗. GDt
θâ also registers a worsening in period 0, but it also registers an improvement

in period 1, before reverting to its intermediate long run value in period 2. This

illustrates that GDt
θâ responds with more inertia to mortality shocks.

G Characterization of the EDθâ index

We first introduce the set-up provided by Baland et al. (2021), which we will use to

charcterize EDt
θâ.

Each individual i is associated to a birth year bi ∈ Z. In period t, each individual

i with bi ≤ t is characterized by a bundle xi = (ai, si), where ai = t− bi is the age

that individual i would have in period t given her birth year bi, and si is a categorical

variable capturing individual status in period t, which can be either non-poor (NP ),

poor (P ) or dead (D), i.e. si ∈ S = {NP,P,D}. (This set-up only considers

outcomes in year t and therefore the notation in Appendix G omits reference to t,

e.g., writing si instead of sti.) We consider again that births occur at the beginning

while deaths occur at the end of a period. As a result, an individual whose status in

period t is D died before period t.26

An individual “dies prematurely” if she dies before reaching the minimal lifespan

â ∈ N. The age threshold â must respect a lower-bound â ∈ N0, such that â ≥ â ≥ 0.

Formally, period t is “prematurely lost” by any individual i with si = D and ai < â.

A distribution x = (x1, . . . , xn(x)) specifies the age and the status in period t of all

n(x) individuals. Excluding trivial distributions for which no individual is alive or

26All newborns have age 0 during period t and some among these newborns may die at the end
of period t. This implies that bi = t ⇒ si 6= D.

35



prematurely dead, the set of distributions in period t is given by:

X = {x ∈ ∪n∈N(Z × S)n | there is i for whom either si 6= D or si = D and â > t− bi}.

Baland et al. (2021) show that the most natural consistent index to rank distri-

butions in X is the inherited deprivation index (IDθâ). Let d(x) denote the number

of prematurely dead individuals in distribution x, which is the number of individuals

i for whom si = D and â > t− bi, p(x) the number of individuals who are poor and

f(x) the number of non-poor individuals. The IDθâ index is defined as:

IDθâ(x) =
d(x)

f(x) + p(x) + d(x)
︸ ︷︷ ︸

quantity deprivation

+θ
p(x)

f(x) + p(x) + d(x)
︸ ︷︷ ︸

quality deprivation

, (11)

where θ ∈ [0, 1] is a parameter weighing the relative importance of poverty and

premature death. An individual losing prematurely period t matters 1/θ times as

much as an individual spending period t in poverty.

We introduce additional notation for the mortality taking place in period t. Con-

sider the population pyramid in period t, and let na(x) be the number of alive indi-

viduals of age a in distribution x, i.e. the number of individuals i for whom ai = a

and si 6= D. (The definition of na(x) corresponds to nt−a(a) in the notation used in

the main text of the paper. In this section, we adopt the notation of Baland et al.

(2021), which does not require to mention period t.) The age-specific mortality rate

µa ∈ [0, 1] denotes the fraction of alive individuals of age a dying at the end of period

t: the number of a-year-old individuals dying at the end of period t is na(x) ∗ µa.

Letting a∗ ∈ N stand for the maximal lifespan (which implies µa∗−1 = 1), the vector

of age-specific mortality rates in period t is given by µ = (µ0, . . . , µa∗−1). Vec-

tor µ summarizes mortality in period t, while distribution x summarizes poverty in

period t as well as mortality before period t. The set of mortality vectors is defined

as:

M =
{

µ ∈ [0, 1]a
∗

∣
∣
∣µa∗−1 = 1

}

.

We consider pairs (x, µ) for which the distribution x is a priori unrelated to

vector µ. We assume that the age-specific mortality rates µa must be feasible given

the number of alive individuals na(x). Given that distributions have finite numbers

of individuals, mortality rates cannot take irrational values, i.e. µa ∈ [0, 1]∩Q, where

Q is the set of rational numbers. The set of pairs considered is given by:

O =

{

(x, µ) ∈ X ×M
∣
∣
∣for all a ∈ {0, . . . , a∗} we have µa =

ca
na(x)

for some ca ∈ N

}

.

Letting da(x) be the number of dead individuals born a years before t in dis-

tribution x, the total number of individuals born a years before t is then equal to

na(x) + da(x). Formally, the pair (x, µ) is stationary if, for some n∗ ∈ N and all

a ∈ {0, . . . , a∗}, we have:

• na(x) + da(x) = n∗ ∈ N (constant natality),

• na+1(x) = na(x) ∗ (1− µa) (identical population pyramid in t+ 1).

36



In a stationary pair, the population pyramid is such that the size of each cohort can

be obtained by applying to the preceding cohort the current mortality rate. The

pair associated to a stationary society (as defined in the main text) is stationary. An

index is a function P : O × N → R+. We simplify the notation P (x, µ, â) to P (x, µ)

as a fixed value for â is assumed.

We now introduce the properties characterizing EDθâ. IDθâ Equivalence requires

that, since the current mortality (in period t) is the same as the mortality prevailing

in the previous periods in stationary societies, any index defined on current mortality

rates is equivalent to IDθâ in the case of a stationary pair:27

Deprivation axiom 1 (IDθâ Equivalence). There exists some θ ∈ (0, 1] and â ≥ â

such that for all (x, µ) ∈ O that are stationary we have P (x, µ) = IDθâ(x).

Independence of Dead requires that past mortality does not affect the index.

More precisely, the presence of an additional dead individual in distribution x does

not affect the index:

Deprivation axiom 2 (Independence of Dead). For all (x, µ) ∈ O and i ≤ n(x),

if si = D, then P ((xi, x−i), µ) = P (x−i, µ).

Independence of Birth Year requires that the index does not depend on the birth

year of individuals, i.e. only their status matters. As Independence of Dead requires

to disregard dead individuals, the only relevant information in x is whether an alive

individual is poor or not.

Deprivation axiom 3 (Independence of Birth Year). For all (x, µ) ∈ O and

i ≤ n(x), if si = s′i, then P ((xi, x−i), µ) = P ((x′
i, x−i), µ).

Replication Invariance requires that, if a distribution is obtained by replicating

another distribution several times, they both have the same deprivation when asso-

ciated to the same mortality vector. By definition, a k-replication of distribution x

is a distribution xk = (x, . . . , x) for which x is repeated k times.

Deprivation axiom 4 (Replication Invariance). For all (x, µ) ∈ O and k ∈ N,

P (xk, µ) = P (x, µ).

Proposition 7 shows that these properties jointly characterize the EDθâ index.

Proposition 7 (Characterization of EDθâ).

P = EDθâ if and only if P satisfies Independence of Dead, IDθâ Equivalence,

Replication Invariance and Independence of Birth Year.

Proof. We first prove sufficiency. Proving that the EDθâ index satisfies Independence

of Dead, Replication Invariance and Independence of Birth Year is straightforward

and left to the reader. Finally, EDθâ index satisfies IDθâ Equivalence because EDθâ

is equal to GDθâ in stationary populations (Proposition 5) and GDθâ satisfies IDθâ

Equivalence (Proposition 2 in Baland et al. (2021)). (The pairs associated to sta-

tionary societies are stationary).

27Recall that past mortality is recorded in distribution x while current mortality is recorded in
vector µ. As vector µ is redundant in stationary pairs, in the sense that µ can be inferred from the
population pyramid, the index can be computed on distribution x only. See Baland et al. (2021)
for a complete motivation for this axiom.
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We now prove necessity. Take any pair (x, µ) ∈ O. We construct another pair

(x′′′, µ) that is stationary and such that P (x′′′, µ) = P (x, µ) and EDθâ(x
′′′, µ) =

EDθâ(x, µ). Given that (x′′′, µ) is stationary, we have by IDθâ Equivalence that

P (x′′′, µ) = IDθâ(x
′′′, µ) for some θ ∈ (0, 1]. As IDθâ = EDθâ for stationary pairs,

we have P (x′′′, µ) = EDθâ(x
′′′, µ) for some θ ∈ (0, 1]. If we can construct such pair

(x′′′, µ), then P (x, µ) = EDθâ(x, µ) for some θ ∈ (0, 1], the desired result.

We turn to the construction of the stationary pair (x′′′, µ), using two intermediary

pairs (x′, µ) and (x′′, µ). One difficulty is to ensure that the mortality rates µa can be

achieved in the stationary population given the number of alive individuals na(x
′′′),

that is µa = c
na(x′′′) for some c ∈ N.

We first construct a n′−replication of x that has sufficiently many alive individuals

to meet this constraint. For any a ∈ {0, . . . , a∗ − 1}, take any naturals ca and ea

such that µa = ca
ea

. Let e =
∏a∗−1

j=0 ej , n
′
a = e

∏a−1
j=0 (1 −

cj
ej
) and n′ =

∑a∗−1
j=0 n′

j .
28

Let x′ be a n′−replication of x. Letting nx =
∑a∗−1

j=0 nj(x) be the number of alive

individuals in distribution x, we have that x′ has n′ ∗ nx alive individuals. We have

P (x′, µ) = P (x, µ) by Replication Invariance.

We define x′′ from x′ by changing the birth years of alive individuals in such a

way that (x′′, µ) has a population pyramid that is stationary. Formally, we construct

x′′ with n(x′′) = n(x′) such that

• dead individuals in x′ are also dead in x′′,

• alive individuals in x′ are also alive in x′′ and have the same status,

• the birth year of alive individuals are changed such that, for each a ∈ {0, . . . , a∗−

1}, the number of a-years old individuals is n′ ∗ nx ∗

∏a−1

j=0
(1−

cj
ej

)
∑a∗

−1

k=0

∏k−1

j=0
(1−

cj
ej

)
.29

One can check that (x′′, µ) has a population pyramid corresponding to a station-

ary population and that each age group has a number of alive individuals in N. We

have P (x′′, µ) = P (x′, µ) by Independence of Birth Year.

Define x′′′ from x′′ by changing the number and birth years of dead individuals in

such a way that (x′′′, µ) is stationary. To do so, place exactly n0(x
′′)− na(x

′′) dead

individuals in each age group a. We have P (x′′′, µ) = P (x′′, µ) by Independence of

Dead.

Together, we have that P (x′′′, µ) = P (x, µ). Finally, by construction we have

H(x′′′) = H(x), which implies that EDθâ(x
′′′, µ) = EDθâ(x, µ).

H Proof of Proposition 4

The proof builds on the framework presented in Appendix A.

We first show that LEt + LGEt
â = â when â ≥ a∗. By definition, LEt and

LGEt
â only depend on the age-specific mortality vector µt. Thus, the values for LEt

and LGEt
â do not depend on whether the society is stationary or not. Consider

any stationary society St whose constant mortality vector is µt. We show for this

stationary society St that LEt + LGEt
â = â when â ≥ a∗.

28These numbers imply that a constant natality of e newborns leads to a stationary population
of n′ alive individuals.

29Observe that
∑a∗

−1
k=0

∏k−1
j=0 (1−

cj
ej

) = LE, implying that e = n′
∗nx

∑a∗
−1

k=0

∏k−1

j=0
(1−

cj
ej

)
.
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As society St is stationary, Lemma 1 applies and we have N t = nt ∗ LEt (Eq.

(6)). As by definition N t =
∑a∗−1

a=0 nt(a), we get

LEt =

a∗−1∑

a=0

nt(a)

nt

. (12)

As society St is stationary, Lemma 1 applies and we have V t(a) = Πa−1
k=0(1 −

µt
k) (Eq. (5)). Using the definition of age-specific mortality rate, namely µt

a =
nt−a(a)−nt−a(a+1)

nt−a(a)
, we can rewrite LGEt

â as

LGEt
â(St) =

â−1∑

a=0

(â− (a+ 1)) ∗
nt−a(a)− nt−a(a+ 1)

nt−a(a)
∗ V t(a).

As society St is stationary, we have that nt(a) = nt−a(a) and nt(a+1) = nt−a(a+1)

for all a ∈ {0, . . . , a∗ − 1}. We can thus successively write

LGEt
â =

â−1∑

a=0

(â− (a+ 1)) ∗
nt(a)− nt(a+ 1)

nt(a)
∗
nt(a)

nt

,

=

â−1∑

a=0

â ∗
nt(a)− nt(a+ 1)

nt

−

â−1∑

a=0

(a+ 1) ∗
nt(a)− nt(a+ 1)

nt

,

=
1

nt

(

â ∗ (nt(0)− nt(â))−

â−1∑

a=0

nt(a) + â ∗ nt(â)

)

,

= â−

â−1∑

a=0

nt(a)

nt

.

By definition of a∗, we have nt(a) = 0 for all a ≥ a∗. When â ≥ a∗, this implies that
∑â−1

a=0
nt(a)
nt

=
∑a∗−1

a=0
nt(a)
nt

. We have shown that LGEt
â = â −

∑a∗−1
a=0

nt(a)
nt

, which

together with Eq. (12) proves that LEt + LGEt
â = â when â ≥ a∗.

The fact that LEt + LGEt
â = â implies that PALEt

θ = â(1− EDt
θâ) because

â(1− EDt
θâ) = (LEt + LGEt

â)(1− EDt
θâ)

= LEt(1− θHt),

= PALEt
θ.

Thus, when â ≥ a∗, PALEt
θ is a linear function of EDt

θâ that depends negatively

on EDt
θâ. Therefore, these two indicators yields opposite ranking of any two societies

A and B, i.e. PALEt
θ(A) ≥ PALEt

θ(B) ⇔ EDt
θâ(A) ≤ EDt

θâ(B).

I Mortality shocks and the evolution of EDt
θâ and

PALEt
θ

We briefly contrast the impact of mortality shocks on PALEt
θ and EDt

θâ, assum-

ing that these mortality shocks are independent of the poverty status. Consider a

mortality shock that equalizes individual lifespans across the age threshold â while

keeping life expectancy LEt constant. This lower dispersion in mortality does not

affect PALEt
θ, which only accounts for mortality through LEt. By contrast, this
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shock reduces EDt
θâ, since LGEt

â is thereby reduced. It is indeed easy to check that
∂EDt

θâ

∂LGEt
â

> 0 (for θHt < 1).

Consider instead a mortality shock that reduces mortality above the age thresh-

old â. Such shock increases LEt but does not affect LGEt
â. As a result, PALEt

θ

mechanically increases. It is also easy to show that deprivation, as measured by

EDt
θâ, decreases:

∂EDt
θâ

∂LEt < 0, for θHt < 1. Moreover, PALEt
θ is more sensitive to

this kind of shock than EDt
θâ, as the elasticity of PALEt

θ to LEt is equal to 1 while

the elasticity of EDt
θâ to LEt lies in (−1, 0). If the mortality shock is such that it

reduces mortality below the age threshold â, this shock simultaneously increases LEt

and reduces LGEt
â. Again, PALEt

θ improves and EDt
θâ decreases since both LEt

increases and LGEt
â decreases.

J Proof of Proposition 6

The proof builds on the framework presented in Appendix A.

By Proposition 5, M t
θâ is Paradox-free if and only if EDt

θâ is Paradox-free.

First, we prove that EDt
θâ is Paradox-free only if θ ≤ 1 and â ≥ a∗. The proof is

by contradiction.

Assume first that θ > 1 and â ≥ 2. Consider two alternative stationary societies

A and B that both feature only one newborn i every year. The life of i is respectively

lAi = (P ) and lBi = (P, P ), namely i lives in poverty for one year in society A and

for two years in society B. Society B is obtained from A by a lifespan increment to

the poor person i. However, we have EDt
θâ(A) =

(â−1)+θ

â
and EDt

θâ(B) = (â−2)+2θ
â

,

which yields EDt
θâ(A) < EDt

θâ(B), which shows that EDt
θâ is not Paradox-free.

Assume then that θ > 0 and â < a∗. Consider two alternative stationary societies

A’ and B’ that both feature two newborns i and j every year. Their lives are

respectively lA
′

i = (P, . . . , P ) and lB
′

i = (P, . . . , P, P ), where i’s lifespan is â years

in society A’ and â+ 1 years in society B’, while lA
′

j = lB
′

j = (NP, . . . , NP ), where

j’s lifespan is â years in both societies. Society B’ is obtained from A’ by a lifespan

increment to the poor person i. By construction, LGEt
â(A

′) = LGEt
â(B

′) = 0.

However, we have EDt
θâ(A

′) = θ
2 and EDt

θâ(B
′) = θ(â+1)

â+â+1 , which yields EDt
θâ(A

′) <

EDt
θâ(B

′), which shows that EDt
θâ is not Paradox-free.

We have thus proven that EDt
θâ is Paradox-free only if θ ≤ 1 and â ≥ a∗.

Second, we prove that EDt
θâ is Paradox-free if θ ≤ 1 and â ≥ a∗. Take any

two stationary societies A” and B” such that B” is obtained from A” by a lifespan

increment to the poor person i. Poor person i dies prematurely in society A” because

â ≥ a∗. The only difference between societies A” and B” is thus that i spends an

additional year in poverty in society B”, instead of prematurely loosing that year in

society A”. This relationship between the two stationary societies A” and B” implies

that the following two equalities hold

LEt(A′′) + LGEt
â(A

′′) = LEt(B′′) + LGEt
â(B

′′), (13)

and

LGEt
â(A

′′)− LGEt
â(B

′′) = LEt(B′′)Ht(B′′)− LEt(A′′)Ht(A′′), (14)
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where each of the two sides of Eq. (14) is equal to 1
nt

where the number of newborns

nt = nt(A
′′) = nt(B

′′) (B” is obtained from A” by a lifespan increment to the poor

person i).30 Eq. (13) implies that EDt
θâ(A

′′) ≥ EDt
θâ(B

′′) if and only if LGEt
â(A

′′)+

θLEt(A′′)Ht(A′′) ≥ LGEt
â(B

′′) + θLEt(B′′)Ht(B′′). This inequality is equivalent

to LGEt
â(A

′′)− LGEt
â(B

′′) ≥ θ(LEt(B′′)Ht(B′′)−LEt(A′′)Ht(A′′)), which further

simplifies to 1 ≥ θ given Eq. (14), which proves that EDt
θâ is Paradox-free.

K Proof of Proposition 3

Proof of (i). We start by the “only if” part. Assume to the contrary that PALEt
0(A) >

PALEt
0(B) or PALEt

1(A) > PALEt
1(B). This directly implies that PALEt

θ(A) >

PALEt
θ(B) for some θ ∈ (0, 1] and therefore we cannot have PALEt

θ(A) ≤ PALEt
θ(B)

for all θ ∈ (0, 1].

We now turn to the “if” part. By definition of the PALEt
θ index, we have to show

that

LEt(B)− LEt(A) ≥ θ ∗ (LEt(B)Ht(B)− LEt(A)Ht(A)), (15)

for all θ ∈ (0, 1]. As PALEt
0(A) ≤ PALEt

0(B), we directly have that LEt(B) −

LEt(A) ≥ 0 because PALEt
0 = LEt. As PALEt

1(A) ≤ PALEt
1(B), we have

LEt(B) − LEt(A) ≥ LEt(B)Ht(B) − LEt(A)Ht(A). It immediately follows that

inequality (15) is verified for all θ ∈ (0, 1].

Proof of (ii). From (i), proving (ii) only requires providing two societies A and

B with Ht(A) < Ht(B) such that PALEt
0(A) ≤ PALEt

0(B) and PALEt
1(A) ≤

PALEt
1(B). If Ht(A) = 0.2, Ht(B) = 0.4, LEt(A) = 50 and LEt(B) = 75 we have

PALEt
1(A) = 40 and PALEt

1(A) = 45, the desired result because PALEt
0 = LEt.

L Robust ED
t
θâ comparisons

EDt
θâ is Paradox-free when θ ∈ (0, 1] and â ≥ a∗. However, EDt

θâ no longer encap-

sulates the minimal view when â ≥ a∗. To ease the impossibility between paradox-

freeness and the minimal view, we define a weaker notion of paradox-freeness. A

deprivation index is minimally paradox free when the index does not record a wors-

ening for increments to the lifespan of a poor person who dies prematurely, i.e.,

whose lifespan is smaller than â. In that case, EDt
θâ is minimally paradox free when

θ ∈ (0, 1].

We assume that the age threshold â ∈ N0 must respect a lower-bound â ∈ N0,

such that â ≥ â ≥ 0. Clearly, the value for the lower bound â influences the set

of comparisons that are robust to the values selected for θ and â. Proposition 8

provides the conditions under which the ranking by EDt
θâ is robust for all θ ∈ (0, 1]

and all â ≥ â.

30The RHS of Eq. (14) is equal to 1
nt

because Nt(B′′)H(B′′) = Nt(A′′)H(A′′)+1 and LEt = Nt

nt

for stationary societies (Eq. (6)). The LHS of Eq. (14) is equal to 1
nt

because by Eq. (13) we have

LGEt
â
(A′′) − LGEt

â
(B′′) = LEt(B′′) − LEt(A′′) and by construction Nt(B′′) = Nt(A′′) + 1 and

LEt = Nt

nt
for stationary societies (Eq. (6)).
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Proposition 8 (Robust comparisons with EDt
θâ).

(i) For any two societies A and B we have EDt
θâ(A) ≥ EDt

θâ(B) for all θ ≤ 1 and

all â ≥ â if and only if

EDt
0â(A) ≥ EDt

0â(B) for all â ≥ â, and

EDt
1â(A) ≥ EDt

1â(B) for all â ≥ â (generalized Condition C1)

(ii) For any â ≥ 2, there exist societies A and B for which EDt
θâ(A) ≥ EDt

θâ(B) for

all θ ≤ 1 and all â ≥ â even though Ht(A) < Ht(B). These societies are such that

LEt(A) < LEt(B).

Proof. See Appendix M for the straightforward proof.

We illustrate Proposition 8 in Figure 12.31 The vertical axis represents the share

of pairs of societies for which Ht and LEt provide identical (at the top) or opposite

rankings (at the bottom). By definition, rankings by Ht and LEt are insensitive to

the age threshold â considered. The horizontal axis represents all possible values of

â, the lower bound on the age threshold.

The left panel describes the share of pairs for which EDt
θâ provides robust rank-

ings as a function of â. Lower values of â imply a fall in the share of cases that EDt
θâ

can rank robustly. Indeed, a larger age interval of values of â over which EDt
θâ has

to be computed implies a larger number of comparisons for EDt
θâ. As a result, the

number of pairs for which it can provide the same ranking for all age thresholds

falls.32 Second, if Ht and LEt provide the same ranking, EDt
θâ provides the same

ranking as Ht when â = a∗. Finally, as discussed above, when Ht and LEt disagree,

a larger value of â implies that the share of cases for which Ht provides an robustly

wrong ranking gets larger.

The right panel reports, for all values of â, the share of pairs of societies for which

PALEt
θ and EDt

θâ provide robust rankings. Since PALEt
θ does not depend on the

age threshold, it is able to rank a larger set of comparisons. As shown in Proposition

4, when â = a∗, the two indices are equivalent.

M Proof of Proposition 8

We first prove the following: for any â ≥ â and any two societies A and B, we have

EDt
θâ(A) ≥ EDt

θâ(B) for all θ ∈ (0, 1] if and only if

EDt
0â(A) ≥ EDt

0â(B) and EDt
1â(A) ≥ EDt

1â(B).

We start with the “only if” part. Assume on the contrary that EDt
0â(A) <

EDt
0â(B) or EDt

1â(A) < EDt
1â(B). This implies that EDt

θâ(A) < EDt
θâ(B) for

some θ ∈ (0, 1] and therefore we cannot have EDt
θâ(A) ≥ EDt

θâ(B) for all θ ∈ (0, 1].

31All graphs that follow are constructed using a lower bound on â equal to 1. Indeed, for θ = 0
and â = 0, EDt

θâ
is equal to zero for all societies and cannot therefore deliver robust comparisons.

32It is not a sufficient condition that the rankings by H and LE are identical for the ranking by
EDt

θâ
to be robust. The reason is that, when â < a∗, LEt no longer contains all the relevant

information on mortality: for instance, two societies can share the same life expectancy at birth
but one with several deaths occurring below â while the other has all deaths occurring above â.
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Figure 12: Share of robust EDt
θâ comparisons as a function of â.
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We turn to the “if” part. By definition of the EDt
θâ index, we have to show that

LGEt
â(A)

LEt(A) + LGEt
â(A)

−
LGEt

â(B)

LEt(B) + LGEt
â(B)

≥

θ

(
LEt(B) ∗Ht(B)

LEt(B) + LGEt
â(B)

−
LEt(A) ∗Ht(A)

LEt(A) + LGEt
â(A)

)

for all θ ∈ (0, 1].

(16)

As EDt
0â(A) ≥ EDt

0â(B), the left hand side of Eq. (16) is non-negative. As

EDt
1â(A) ≥ EDt

1â(B), Eq. (16) holds for θ = 1. As a result, inequality (16) holds

for all θ ∈ (0, 1].

Proof of (i). This is an immediate implication of the statement proven above.

Proof of (ii). Consider two societies A and B with Ht(A) < Ht(B) for which the

generalized condition C1 holds.

Society A is such that Ht(A) = 0.4 and all its individuals die in their first year

of life, which implies that LEt(A) = 1 and LGEt
â(A) = â− 1. Therefore, society A

is such that

• EDt
0â(A) =

â−1
â

and EDt
1â(A) = 1− 0.6

â
for all â ≥ â.

Society B is such that Ht(B) = 0.5 and all its individuals die at the maximal age

a∗ − 1, which implies that LEt(B) = a∗ and

• LGEt
â(B) = 0 if â ∈ {2, . . . , a∗},

• LGEt
â(B) = â− a∗ if â > a∗.

Therefore, society B is such that

• EDt
0â(B) = 0 and EDt

1â(B) = 0.5 for all â ∈ {2, . . . , a∗},
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• EDt
0â(B) = â−a∗

â
and EDt

1â(B) = 1− 0.5a∗

â
for all â > a∗.

By statement (i), we get EDt
θâ(A) ≥ EDt

θâ(B) for all θ ∈ (0, 1] and all â ≥ â if

we have EDt
0â(A) ≥ EDt

0â(B) and EDt
1â(A) ≥ EDt

1â(B) for all â ≥ â. Recalling

that â ≥ 2, one can then easily check that we have EDt
0â(A) ≥ EDt

0â(B) and

EDt
1â(A) ≥ EDt

1â(B) both for all â ∈ {2, . . . , a∗} and for all â > a∗.

N Descriptive statistics

Table 5 lists all the countries present in our data set as well as the 2019 values of the

main variables of interest.

Table 5: Countries used in the dataset and descriptive statistics

Country H LE LGE70 LE*H PALEt
1 ED1,70

% Years Years Years Years %

Albania 0 75 4 0 75 5

Algeria 0 73 5 0 73 7

Angola 35 60 13 21 39 47

Armenia 1 74 4 0 74 6

Azerbaijan 0 69 7 0 69 9

Bangladesh 6 71 6 4 67 13

Belarus 0 70 6 0 70 8

Belize 20 72 6 15 58 26

Benin 14 62 12 9 53 29

Bhutan 0 73 6 0 73 7

Bolivia 2 65 9 1 64 13

BosniaandHerzegovina 0 74 4 0 74 5

Botswana 14 59 14 8 51 30

Brazil 6 73 6 4 69 13

Bulgaria 1 69 6 0 69 9

BurkinaFaso 26 59 14 15 44 41

Burundi 62 61 12 38 23 68

CaboVerde 5 72 5 4 69 12

Cameroon 23 60 13 14 46 37

CentralAfricanRepublic 66 50 21 33 17 76

Chad 32 57 16 18 39 47

China 0 77 3 0 77 4

Colombia 7 75 5 6 70 13

Comoros 18 66 9 12 54 29

CongoDemRep 78 61 12 47 13 82

CongoRep 45 61 12 28 33 54

CostaRica 1 77 4 1 76 7

CotedIvoire 11 62 12 7 55 25

Czechia 0 77 3 0 77 4

Djibouti 17 63 11 11 53 29

DominicanRepublic 1 73 6 1 72 9

Ecuador 4 73 5 3 71 10
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...continued from previous page

Country H LE LGE70 LE*H PALEt
1 ED1,70

% Years Years Years Years %

EgyptArabRep 1 68 6 1 67 10

ElSalvador 4 72 6 3 69 12

Eswatini 32 52 19 16 35 50

Ethiopia 18 64 11 12 52 30

Fiji 3 65 9 2 63 14

Gabon 3 63 11 2 61 17

GambiaThe 17 62 11 10 52 30

Georgia 5 71 6 4 67 12

Ghana 23 64 11 14 49 34

Grenada 0 69 6 0 69 9

Guatemala 7 69 8 5 64 16

Guinea 13 59 14 7 52 29

GuineaBissau 25 57 15 15 43 41

Guyana 4 64 10 3 61 17

Haiti 31 59 14 18 41 44

Honduras 13 68 7 9 59 21

India 14 68 8 9 59 23

Indonesia 4 69 7 2 66 12

IranIslamicRep 1 74 4 1 73 6

Iraq 0 69 6 0 69 8

Jamaica 0 73 5 0 73 7

Jordan 0 75 4 0 75 5

Kazakhstan 0 69 7 0 69 9

Kenya 36 63 11 23 40 45

Kiribati 1 63 11 1 62 16

KyrgyzRepublic 1 71 6 1 71 8

LaoPDR 7 67 9 5 62 17

Lebanon 0 74 4 0 74 5

Lesotho 36 48 23 17 30 57

Liberia 31 62 12 19 43 42

Madagascar 81 61 12 50 12 84

Malawi 70 58 14 41 17 76

Malaysia 0 72 5 0 72 7

Maldives 0 78 3 0 78 4

Mali 20 58 15 12 46 37

MarshallIslands 1 64 10 1 64 14

Mauritania 6 68 8 4 64 15

Mauritius 0 72 6 0 72 7

Mexico 2 70 7 1 69 10

Moldova 0 71 6 0 71 7

Mongolia 0 69 7 0 69 9

Montenegro 2 72 4 1 70 7

Morocco 1 72 5 1 71 8
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...continued from previous page

Country H LE LGE70 LE*H PALEt
1 ED1,70

% Years Years Years Years %

Mozambique 75 55 17 42 14 81

Myanmar 3 67 9 2 65 14

Namibia 16 59 13 10 50 31

Nepal 3 68 8 2 66 13

Nicaragua 3 72 5 2 70 10

Niger 53 61 13 32 29 61

Nigeria 32 62 13 20 42 44

NorthMacedonia 3 71 5 2 69 9

Pakistan 4 64 11 3 61 18

PapuaNewGuinea 36 62 11 22 40 46

Paraguay 1 71 6 0 71 8

Peru 3 71 6 2 69 10

Philippines 7 67 8 5 63 16

Romania 0 72 5 0 72 6

RussianFederation 0 69 7 0 69 9

Rwanda 45 64 10 29 35 53

SaoTomeandPrincipe 15 70 6 10 59 22

Senegal 10 65 9 6 59 21

Serbia 1 73 4 1 72 6

SierraLeone 26 60 14 15 44 40

SolomonIslands 29 65 9 19 46 38

SouthAfrica 20 60 13 12 48 35

SriLanka 1 76 4 1 75 6

StLucia 0 72 6 0 72 7

Sudan 25 67 8 17 50 33

Suriname 1 70 7 1 69 11

SyrianArabRepublic 21 72 5 15 56 26

TaiwanChina 0 80 3 0 80 3

Tajikistan 3 68 7 2 66 13

Tanzania 44 63 11 27 35 52

Thailand 0 75 5 0 75 6

Togo 27 62 12 17 45 39

Tonga 0 72 5 0 72 7

Tunisia 0 73 5 0 73 6

Turkiye 0 74 4 0 74 6

Turkmenistan 5 67 8 3 64 15

Uganda 42 60 13 25 35 52

Ukraine 0 70 6 0 70 8

UnitedArabEmirates 0 74 3 0 74 4

Uzbekistan 2 72 6 2 70 10

Vanuatu 12 65 9 8 57 23

Vietnam 1 73 5 1 73 7

WestBankandGaza 1 73 4 1 72 6
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...continued from previous page

Country H LE LGE70 LE*H PALEt
1 ED1,70

% Years Years Years Years %

YemenRep 52 64 10 33 31 58

Zambia 64 57 15 37 20 72

Zimbabwe 41 54 17 22 32 55

O Building PALEt
θ and EDt

θâ in practice

How should a practitionner build our different indices with available data ? Table 6

presents the different step required to build our PALEt
θ and EDt

θâ indices, the data

source as well as their 2019 value.

Table 6: PALEt
θ and Expected Deprivation in the developing world in 1990 and

2021, with â = 70.

Unit 1990
Value

2021
Value

Computation

Life Expectancy (LE) Years 64.5 71.0 Source: Global
Burden of Disease
Collaborative
Network (2021)

Poverty Headcount (H) % 38.5 9.5 Source: World
Bank (2024)

LE*H Years 24.9 6.7 LE* H

PALEt
1 Years 39.7 64.3 LE-θH*LE

Lifespan Gap
Expectancy70

Years 11.7 7.1 See Section 4.2

Expected
Deprivation1,70

% 47.9 17.7 LGEâ

LE+LGEâ
+ θ LE∗H

LE+LGEâ

P Ambiguous countries’ trajectories

In Figure 13, we provide PALEt
θ comparisons within countries between present and

past situations. More precisely, for each year, we compare the situation in period t

to the situation prevailing in the same country five years earlier. Given that each

country’s situation changed over time, we need to adapt our graphical presentation

to represent the set of situations for which PALEt
θ stays constant over time. We

conservatively assume θ equal to one.

By definition, PALEt
1 = LE(1 − H), and thus PALEt

1 increases if and only if

dLE/LE > d(1−H)/(1−H). This simple expression allows us to contruct a figure

in the (dLE/LE, d(1 − H)/(1 − H)) plan, in which the rate of growth of LE is

measured on the horizontal axis, and the rate of growth of (1 −H), which we refer

to as the “Non-poverty Headcount”, on the vertical axis. We define the “zero-growth

PALEt
1” curve, which represents all the combinations of the two growth rates such

that PALEt
1 remains unchanged: dLE/LE = d(1−H)/(1−H) . Above this curve,

PALEt
1 increases and below this curve PALEt

1 decreases.

47



The situations of interest are located in the northwest and in southeast quadrants

in which the two indicators move in opposite directions. In these quadrants, there

are two regions, one in the triangle below the curve in the northwest quadrant, and

one in the triangle above the curve in the southeast quadrant for which PALEt
θ is

able to provide a clear welfare comparison. In these two areas, the shaded triangles

represent situations in which, in a particular country, the situation either strictly

improved (in the southeast quadrant) or deteriorated (in the northwest quadrant)

compared to the situation prevailing in the same country five years earlier.33

Figure 13: Resolution of ambiguous countries’ trajectories, 1990-2021
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Reading: Each dot represents a country-year. Countries located in the southwest
(northeast) quadrant are worse (better) off than they were 5 years earlier. Countries’
evolution located in the other quadrants can not be unambiguously assessed with a
dashboard approach. Countries’ trajectories located between the zero growth-PALE
curve and the zero non poverty headcount growth line can be unambiguously assessed
with PALEt

θ.
Note: for readibility, the graph only shows the points situated between a growth rate
of +/- 30% in non poverty headcount and of +/-8% in life expectancy. These are
85% of all observations.

33Again, if being dead is strictly worse than being poor, so that θ is always strictly lower than
one, more situations can be strictly signed. They are located in the triangle above the “zero-growth
PALEt

1” in the NW quadrant, and in the triangle below the “zero-growth PALEt
1” in the SE

quadrant.
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