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ABSTRACT

I study a decentralized marriage market with search frictions, costly
skill investments, and non-transferable utility. Agents differ in their costs
of acquiring high skills and engage in search for a potential match. Payoffs
depend on the skill levels of both partners. Despite a symmetric underlying
environment—where neither payoffs nor the matching technology favor a
gender—the market can exhibit asymmetric equilibria. A larger fraction
of agents from one side invests in skills, while fewer from the other side
do. High skill premiums drive these asymmetries, which can uniquely arise
under specific conditions. A microfounded household labor supply model
links rising wages for high-skilled individuals to these outcomes, offering
insights into declining female labor force participation.
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1. Introduction

I study a decentralized matching market with three features: First, participants
face search frictions; second, participants make costly investment decisions to ac-
quire skills; and third, transfers are not available to equilibrate matches, i.e., pay-
offs are non-transferable. The paper makes two contributions. First, I develop a
simple and tractable model to examine skill investment decisions within a search-
and-matching framework under non-transferable utility. Second, I demonstrate
how a rise in skill premium—where members of a household receive higher pay-
offs from having at least one highly skilled member in the household—can create
gender-based disparities in skill acquisition. Specifically, I show that rising skill
premiums can lead to asymmetries in how males and females invest in skills, which
may reflect patterns of discrimination.

The motivation to explore whether gender-based disparities can emerge as equi-
librium outcomes stems from the documented decline in female labor force partic-
ipation in several developing countries (see Klasen, 2019, for instance). This trend
has coincided with a rapid rise in high-skill sectors like information technology
in India, where the returns to being highly skilled have grown significantly. How
might this increased skill premium affect pre-marital investments in skills?

On one hand, higher skill premiums could incentivize greater investments in
education to enhance labor market outcomes. On the other hand, there is a coun-
tervailing force: if the marginal value of having a highly-skilled spouse decreases
when one is highly skilled themselves, individuals with moderate talent—those for
whom skill acquisition is costly—might avoid these investments. Instead, they may
rely on matching with highly-skilled partners, anticipating household specializa-
tion. In such cases, the highly-skilled partner focuses on labor market participation
while the low-skilled partner assumes greater responsibility for domestic produc-
tion. Such specialization can exacerbate disparities: as more individuals on one
side of the market invest in skills, a substitution effect might occur, discouraging
skill acquisition on the other side.

This feedback loop is at the core of this paper. The main results demonstrate
how changes in the underlying payoff structure—where household payoffs increase
significantly when at least one member is highly skilled—can create gender-based
disparities in skill acquisition, despite a fully symmetric underlying environment.
Crucially, with a low skill premium, the unique equilibrium is symmetric: an iden-
tical proportion of men and women invest in skill acquisition. However, when the
skill premium increases, we can have a unique equilibrium that is asymmetric: a
far greater proportion of one gender invests in acquiring skills, while fewer people
from the other gender acquire skills. Additionally, through a parameterized exam-
ple, I provide a microfounded model of a non-cooperative game within a household
in the spirit of Chiappori (1988) to illustrate how such changes in payoffs may arise
and show how this mechanism can drive a decline in labor force participation on



one side of the market.

I now briefly describe the framework. The market consists of a continuum
of agents from two sides, men and women. Agents engage in an undirected
search to find a potential match. Prior to beginning their search, each decides
whether to incur a cost to acquire high skills or to remain low skilled. An agent’s
cost depends on their type, indexed by their identity in the unit interval. An
agent with a higher type incurs a higher cost to acquire high skills. After making
this investment choice, they begin the search phase wherein they meet partners
from the other side randomly. When two people meet, they observe each other’s
skills and decide whether to match with each other. Their payoffs conditional
on matching depends only on their skills and not their latent type. Therefore,
there are four possible payoffs for an agent conditional on matching, denoted by
¢(H,H),p(H, L), ¢(L,H),d(L, L), where the first argument is their own skills and
the second is their partners’ skill level. If two agents match, they immediately leave
the market and are replaced by their identical copies. Otherwise, they continue
searching. This simple construction ensures that the economy is perpetually in the
steady state. Our goal is to understand the structure of pure strategy equilibria
and their relation with the payoff function ¢(-,-). In particular, I seek to under-
stand the factors that lead to equilibria with asymmetric levels of investment from
the two sides of the market. The point of the exercise, then, is to illustrate that
disparities can arise even when the underlying environment is fully symmetric in
terms of preferences, payoffs, and the matching technology.

I briefly digress to highlight the three key features of the model. Among these,
search frictions and costly investments are particularly pervasive. Individuals—or
their parents in some contexts—make premarital investments anticipating labor
market outcomes that influence their marriage prospects. Meanwhile, the preva-
lence of dating apps and marriage bureaus serves as clear evidence of search fric-
tions in modern marriage markets. The third feature of non-transferable utility
(NTU) is motivated by social matches such as marriages. The seminal paper by
Becker (1973) also briefly considered such an environment. To quote Smith (2006)
(who also studied a marriage market with search frictions and NTU),

But in defense of the NTU model, disagreements about matching in so-
cial settings are not uncommon. And whenever we observe a potential
match or split desired by one party but not the other, utility is obviously
not fully transferable. For the total match surplus either is positive or
15 not, and there can be no disagreement.

A rather pronounced case of such a disagreement is a sharp discontinuity around %
in the share of income earned by the wife in couples documented by Bertrand et al.
(2015). They show that, in the context of couples in the US, there is considerable
aversion to a situation where the wife earns more than her husband. A world
with fully transferable would show no such discontinuity: whatever may be the
psychological cost to the husband due to wife earning more, can be compensated



through transfers.

We aim to characterize the equilibrium structure, with a particular focus on
agents’ investment decisions. Proposition 1 establishes existence, allowing us to
turn to the nature of equilibrium outcomes. To do so, we first analyze the post-
investment matching game. I assume that every agent strictly prefers a highly
skilled partner over a low-skilled one. This immediately rules out negative as-
sortative matching, as a high-skilled agent will never reject another high-skilled
agent. Thus, equilibria must take one of two forms: either a positive assortative
matching (PAM) equilibrium, where high-skilled agents match exclusively with
high-skilled partners, or an all-match (AM) equilibrium, where all agents accept
any available partner.!

As expected, the ability to reject low-skilled partners in favor of high-skilled
ones depends on market conditions. If the market is too thin—meaning agents
face long waiting times before meeting a partner—rejecting a match becomes
costly, making PAM less viable. Proposition 2 formalizes this by showing that
PAM exists only if the market is sufficiently thick and the marginal gains of a
high-skilled match are large enough.

From an investment perspective, PAM induces symmetric investment patterns:
both men and women follow a common cutoff rule—agents below a threshold invest
in high skills, while those above it do not. The intuition is straightforward. Under
PAM, investments act as strategic complements—as more women become highly
skilled and begin rejecting low-skilled men, marginal men are further incentivized
to invest in skills to secure a high-skilled match.

Therefore, if at all there is to be an asymmetric equilibrium, it cannot involve a
PAM as a continuation equilibrium. However, even if the matching stage follows an
AM equilibrium, Proposition 3 shows that investment decisions remain symmetric
if the payoff function is supermodular. This follows naturally—supermodularity
fosters complementarities in investment, reinforcing symmetric skill acquisition.”

What happens if the payoff function is submodular? In sufficiently thin markets,
PAM is ruled out, as discussed earlier. Within these environments, symmetric
equilibria—when they exist—are unique among symmetric strategies. However,
Proposition 4 establishes the possibility of asymmetric equilibria, where one side of
the market entirely forgoes skill investment. To obtain sharper results, we further
specialize to affine cost functions, assuming that the cost of acquiring high skills
varies affinely with type.

Proposition 5 fully characterizes this environment—moderately thin markets
with submodular payoffs and affine costs. The key takeaway is that only three

'In some cases, we could also envision other asymmetric equilibria where the two sides invest
asymmetrically in skill acquisition and, subsequently, one side of the market rejects all the low-
skill partners from the other side. However, those can be ruled with additional assumptions.

2For instance, Atakan et al. (2024) obtain PAM in a search environment, albeit in a TU
framework.



types of equilibria are possible.

1. Symmetric Equilibrium: A cutoff type z,,, exists, below which men and
women invest in skills.

2. Full Investment from One Side (FIOS): All men acquire skills, while only
women below a type z do.?

3. No Investment from One Side (NIOS): No men invest in skills, while women
below a type = do.

As the notation suggests, these thresholds satisfy £ > x4y, > z. Importantly,
FIOS and NIOS equilibria can never coexist. Moreover, asymmetric equilibria are
not only possible but, in some cases, unique (among pure strategy equilibria).

It is worth noting that several papers have documented some disparities arising
out of structural asymmetries such as fertility concerns Low (2024); Siow (1998);
Zhang (2021). In contrast, disparities in skill acquisition between men and women
can arise in equilibrium despite the absence of any asymmetry in the payoff or
matching technology. This disparity arises due to search frictions and NTU.* At
its core though, the underlying intuition is very much like one from public goods
games. Essentially, high-skills are somewhat like a public good. When a person
acquires high skills, even their partner benefits. But the cost of acquiring this
high-skill is borne by the person acquiring the skills. Thus, we can have equilibria
where one side invests asymmetrically more in providing this public good. This
reasoning, although somewhat on the right lines, is incomplete because of two
reasons. First, agents’ payoffs are increasing in their skills even if the partner is
highly-skilled. Thus, there is some incentive to acquire high skills regardless of the
spouse’s skill level.” Second, even in the case of submodular payoffs where this
public nature appears to be the strongest, we have environments that admit only
the symmetric equilibrium.

How does this asymmetry relate to increasing skill premium that I discussed at
the start of the introduction though? This question is answered in Proposition 6.
Essentially, given any environment that only admits the symmetric equilibrium,
if o(H,H) — ¢(L, L), the difference between the highest and the lowest payoff,
is sufficiently low, then we can construct another environment with the following
two features: (i) ¢(L, L) remains unchanged, and (iz) the payoff to every member
of the household with at least one highly-skilled person is higher, such that the
new environment admits a unique equilibrium, the FIOS one. Therefore, not only

3Naturally, the gender assignment is arbitrary—an analogous equilibrium exists where all
women acquire skills and men below z do.

4If we had no search frictions and were in the TU world, then a submodular payoff function
leads to a unique stable matching that is negatively assortative. I conjecture that this would
lead to asymmetry in skill acquisition but I do not have a reference to this effect.

°For instance, if I started with the assumption that ¢(H, H) < ¢(H, L), i.e., if one is high-
skilled then they prefer to be matched with a low-skilled person, then obtaining this asymmetry
would be straightforward in some cases. Essentially, it would be optimal for one side to invest
in skills and the other side not to in this case.



can asymmetry may arise in equilibrium, but rather, in some environments, it will
necessarily arise.

As a final step, I even provide a parametric example that numerically illustrates
that the changes in the payoff functions that give rise to asymmetric equilibria
can be easily microfounded. This approach is atypical in the matching literature
where the payoff functions from matching are taken as exogenous. However, |
write a simple non-cooperative game between the husband and the wife following
Chiappori (1988).° The utility of each member has a public component that
depends on the total household income and domestic production. Members decide
how to split their time working outside and towards domestic production. Working
outside generates income proportional to their wages which depend on their skills.
Domestic production is an increasing function of the total effort expended on
it. Members view domestic production as a costly activity (relative to working
outside), and the costs are private. Example 1 demonstrates how increasing wages
in such a setup can lead us from a situation where we have from a unique symmetric
equilibrium to two equilibria, one symmetric and one NIOS.

I end this section with one remark. Technically, the NTU assumption offers a
considerable simplicity to the problem. The reason is that, in the TU framework,
whenever two agents match we only know their joint surplus. But their individ-
ual values—which determine their incentive constraints—have to be determined
endogenously. In contrast, the exogeneity of the payoff enables us to cleanly char-
acterize the equilibrium values and agents’ incentives. Finally, this feature also
enables the comparative static on skill premium which is the main point of the

paper.

2. Related Literature

Naturally, this paper is related to the large literature on matching markets. There
are two broad directions in which this literature has evolved. The initial papers,
such as by Becker (1973); Gale and Shapley (1962); Shapley and Shubik (1971)
assumed a frictionless matching markets. Somewhat later, Shimer and Smith
(2000, 2001); Smith (2006) investigated these markets with search frictions. Across
these two frameworks, another important distinction is between transferable util-
ity (such as Becker (1973); Shapley and Shubik (1971)) vs non-transferable utility
(such as Gale and Shapley (1962); Smith (2006)). The post-investment stage of
my game can be viewed as a decentralized version of Gale and Shapley (1962)
which was studied by Adachi (2003); Smith (2006). To this setting, I add an
investment choice before the search phase. A large literature has studied costly
investments in marriage markets, (see Bhaskar and Hopkins, 2016; Bhaskar et al.,
2023; Chade and Lindenlaub, 2022; Cole et al., 2001; Mailath et al., 2013; Noldeke

6See Chiappori (2020) for a detailed survey on various models of household labor supply
decisions as games.



and Samuelson, 2015; Peters, 2007, for instance). Most of these papers study
the efficiency of such investments. With the exception of Chade and Lindenlaub
(2022) and Bhaskar and Hopkins (2016) most other papers assume that the returns
are deterministic, while these two study various issues related to how riskiness of
investments affects the match outcomes as well as investments themselves. Also,
Bhaskar et al. (2023) highlight how asymmetries in investments can occur when
the two genders differ in their bargaining power. Crucially, in contrast to my
paper, all of these papers have frictionless matching markets. Recently, Atakan
et al. (2024) study a marriage market with search frictions, costly investments, and
transferable utility. Their main finding is that the outcomes are constrained effi-
cient and assortative in a wide variety of settings. In contrast, adopting the NTU
framework, I sidestep the question of effilency and focus solely on the disparities
in skill acquisition that arise in equilibrium.

Given my emphasis on the gender differences in skill acquisition, I am naturally
related to the papers that highlight these issues in various contexts, e.g. Chiappori
et al. (2009, 2017); Low (2024); Zhang (2021). Often, unlike the current paper,
these papers assume some innate differences in preferences or the technological
environment that give rise to these disparities.

3. Model

The economy consists of a unit mass of men and a unit mass of women, each
indexed by a type = € [0,1]. Upon “birth,” agents choose a skill level from a finite
set S, which is assumed to be binary for most of the paper: & = {H, L}, where
H represents high skill and L represents low skill. The cost of acquiring skill s for
an agent of type z is C'(x, s). Normalizing C'(z, L) = 0, we denote C(z, H) simply
as C(z), assuming it is increasing and weakly convex—higher-skilled individuals
face higher costs.

If a man with skill s and a woman with skill s’ match, the man’s payoff is
¢(s,s'), and the woman’s is ¢(s’,s). That is, the first argument represents an
individual’s own skill and the second, their partner’s. This is a non-transferable
utility (NTU) setting where payoffs depend only on skill levels, not on underlying
type. Agents discount future payoffs at rate r > 0.

We impose the following standard ranking of payoffs:

ASSUMPTION 1: ¢(H,H) > ¢(H,L) = ¢(L,H) = ¢(L, L).

This assumption can be microfounded through a household decision-making
problem as in Chiappori (1988). See Section 6 for an example.

An economy is a tuple (¢, C, \,r) consisting of the payoff functions, the cost
functions for acquiring different skill levels, and the arrival rate of potential part-
ners that we will describe momentarily.

Timing: Time is continuous and infinite. At each instant, unmatched agents en-



gage in costless, undirected search, observing the skill distribution of the opposite
pool. When two agents meet, they observe each other’s skills and decide whether
to match. If they do, they leave the market and are replaced by identical un-
matched copies. Newly born agents make an irreversible skill investment decision
before entering the unmatched pool.

Thus, the economy is perpetually in “steady state”, i.e., the mass of each set
of agents, men and women, remains to be 1 and their type distribution remains
unchanged. Unmatched agents meet others drawn at random from the unmatched
pool at an exponential rate \.”

Strategies: We restrict attention to stationary equilibria (where strategies of
any type do not vary with time). A strategy for a type x and gender ~y specifies
a choice of skill to acquire, and then, subsequently, an acceptance set during the
search phase. This specifies the set of agents one is willing to match with should
they meet them. It is without loss to restrict attention to pure strategies insofar
as investment is concerned. We denote by I7 : [0,1] — {0,1} the investment
strategy of a type x agent of gender ~, where one indicates their decision to acquire
high skills and zero does not. We assume that [7 is measurable. Given players’
investment strategies, let (] := SIV(x)d:L’ denote the proportion of H types in
group . Since the dependence on [ is obvious in most cases, we will omit it. Post
the agents’ investment decisions, they engage in an undirected search. Whenever
they meet someone, they have to decide whether to match with that person or not.
If both the agents agree to a match, then the match takes place. The acceptance
strategy specifies the probability of accepting an agent of each skill type and
depends on one’s own type as well as the proportion of the high types from the
opposite pool. First, given Assumption 1, no agent would ever turn down a high
type agent. Therefore, we merely need to specify the probability of accepting a
low type for each gender and skill type. We denote by o : [0,1] x {H, L} — [0, 1]
the probability that an agent of gender + and skill s accepts a low type agent of
the opposite gender given the proportion of the high types from group ~’. Often,
this dependence on ¢ is obvious and, therefore, we will suppress it.

3.1. Equilibrium

Agents choose their skill levels optimally given their expected value minus the
cost. Let us first write each skill types’ expected value. For v,7" € {M, W} such

"Since the economy is perpetually in the steady state with a unit mass of population on either
side, we do not need to scale it with the population size.



that v # 7' and given players’ strategies (17, a”) efm,w}, We have

o _A[CTO(H, H) + (1= () (H)o(H, L)]
AT+ (L (o (H)
A[C 0 (H)$(L H) + (1= ¢)a (L)a” (L)(L, L)]

r+ A" (H) + (1= ¢7)a7(L)ar (L))

VI(H,a";¢7a7)

(Values)

V(L% ¢7 a7 =

These values can be obtained through straightforward recursive equations that we
omit. An agent of skill s and gender v chooses to maximize V (s, a”; (", a"") given

(¢",a™).
An equilibrium consists of the investment and acceptance strategies for each
gender and skill type, {(I7, &) eqa,wy), satisfying (IC-invest) and (IC-AL) below.

>0 = N(z)=1
VI(H,a"; ¢, a") = C(z) = VI(L,a%;(" ") { =0 = I"(z) € {0,1}

V
=
\‘Cla
=

Qo

2
o
Il

(IC-AL)

(IC-invest) ensures that the agents’ investment decisions are optimal, while (IC-AL)
specifies that agents acceptance decisions are optimal. In particular, if the value
to agent is higher than what (s)he would receive by matching with a low-skilled
person, then (s)he must not be accepting the low-skilled person. As the proof of
Proposition 1 shows, in any equilbrium, the investment strategies are character-
ized by a cutoff type, Z, for each v, such that an agent i of gender v and type z;
invests if and only if z; < Z,,.

NOTATION 1: In light of the above, we will denote an equilibrium by ()A(, «) where
each, X = (T, %) and o = (&7 (H),a" (L)) efmuw} are vectors denoting the rele-
vant strategies. In general, X denotes a vector (., Ty).

To avoid getting sidetracked, let us first establish that an equilibrium exists.
PROPOSITION 1: An equilibrium always exists.

Having taken care of the existence issue, we turn to the more substantive issues.
What type of sorting do we see in the equilibria, and more importantly, what are
the investments that agents make? In light of Assumption 1, no agent will ever
reject a high skilled person. Therefore, we can rule out the existence of a negatively
assortative match. Thus, insofar as pure strategy equilibria are concerned, we are
left with the following two possibilities:



1. All match (AM): Agents match with the first agent they meet.

2. Positive Assortative Matching (PAM): High types match with high types,
and low types match with low types.

There is also a third possible candidate wherein one side of the market only ac-
cepts the high-skill partners from the other side and the low skilled people remain
permanently unmatched. Such equilibria have to be necessarily asymmetric if they
exist. Furthermore, those can be ruled with additional assumptions. Regardless, I
focus on equilibria where every agent is eventually matched with probability one.

Of course, understanding the structure of equilibria given the initial investments
is not particularly challenging. The object of our interest though is, primarily, the
nature of investments that arise in equilibria and then, subsequently, the structure
of the continuation equilibria. Towards this goal, let us understand the incentive
constraints for each of the above equilibria.

3.2. AM

In the case of this match, a”(-) = 1 for all 4. Given X , the players’ payoffs (with
some abuse of notation), denoted by V] (-) are:

_AZyo(H H) + (1= 2y)p(H, L)]

VIH; X) = RS , and
VX(L,X) :)‘[‘%W’Qb(L? H) :—i(_l)\_ ‘%’Y’)Qb(L? L)]

For (X a) as specified to be an equlhbrlum we need that o be an equilibrium in
the continuation game given X and that X be optimal given the selected equi-
librium in the continuation game. Let us ignore the trivial cases where either
everybody invests or nobody does, and assume that at least one of Z,,, T, is inte-
rior. In the case, the IC constraints for this equilibrium are:

VIH;X)-C(3,) = VI(L:X) itz e(0,1) (AM: Invest)
VI(H:X) < ¢(H, L) (AM: H-L)
VA(L;X) ¢(L, L) (AM: L-L)

(AM: Invest) ensures that Z., is indifferent between investing and not if z, € (0, 1).
(AM: H-L) and (AM: L-L) guaranty that an H or L type respectively do indeed
match with an L type should they meet with each other.

10



4. Analysis of the PAM equilibria

Here, a”(H) = 0,a7(L) = 1. So, the players’ payoffs (with some abuse of nota-
tion), denoted by V2 (+), are:

o6 (H, H)
r+ )\Z/L’\fyl

ML= 7,)9(L, L)
r+A1—-2y)
(PAM: Values)

VI(H; X) = and  V3(L; X) =

And for such an equilibrium to exist with an interior X , the IC constraints are:

VI(H; X) - C(Z,) = V(L X) (PAM: Invest)
V;(H;)?) > ¢(H, L) (PAM: Assortativity)

(PAM: Invest) checks for the indifference of the cutoff type Z.,, while (PAM: Assortativity)
ensures that a high-skill person prefers to wait to match with another high-skill
person that matching with a low-skill person if they meet one.

PROPOSITION 2: No PAM exists if \[o(H, H) — ¢(H, L)] < r¢(H, L). Whenever
a PAM exists it is symmetric, i.e., T, = Tp.

Since a PAM is always symmetric, if the market witnesses ex-post asymmetry
in skill acquisition from the two sides, it must necessarily come from an AM equi-
librium. Before we analyze those further, I will remark that it is straightforward
to construct parameters so that a PAM exists. Thus, Proposition 2 is not vacu-
ous. Moreover, the sufficient condition in the non-existence of a PAM trades off
the marginal value of meeting a high-skilled partner (A ¢(H, H) — ¢(H, L)]) with
the foregone benefits of matching a low-skilled partner that is currently available
(r¢(H,L)). Whenever the marginal value of waiting to meet an H type is suffi-
ciently low (even if the entire population of the other side is highly skilled), an
agent would not find it worthwhile to let go of an L type whom (s)he meets. In
this regard, let us focus on the cases where no PAM exists and analyze the AM
equilibria in greater depth.

5. Analysis of the AM equilibria

Let us define two objects that appear repeatedly in the proofs of the results that
follow.

A:=¢(H,H)+¢(L, L) — ¢(H,L) — ¢(L, H)
AV ¢(H> L) - ¢<L>L)'

By Assumption 1, A, = 0. Moreover, A > (<)0 if ¢(-,) is supermodular (sub-
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modular).

PROPOSITION 3: If ¢(-,-) is supermodular, then all AM equilibria are symmetric,
0.6, Ty = Top-

Therefore, if there is any ex post asymmetry in investments between the two
sides, it cannot arise in a PAM equilibrium or in an AM equilibrium if ¢(-,-)
is supermodular. Thus, if at all there is a possibility of some asymmetry, it
must come from a submodular ¢(-,-) function, to which we now turn. Also, since
the underlying environment is symmetric, if there is an asymmetric equilibrium
(T, Ty ), then there is also an asymmetric equilibrium (Z,,, Z,,). Therefore, when
we say that there is a unique asymmetric equilibrium it would typically mean up
to permutation.

PROPOSITION 4: Suppose that ¢(-,-) is submodular. Then, the following hold.

1. 3 a symmetric equilibrium if \[¢(H, H)—¢(H, L)] < r¢(H, L) and \[¢(L, H)—
o(L,L)] <r¢(L,L). Whenever a symmetric equilibrium exists, it is unique.

2. If |Al] is sufficiently large, then there is a unique asymmetric equilibrium
(up to permutation), (0,z*), wherein women with type below x* acquire high
skills while no man does.

The first part of Proposition 4 establishes the existence of a symmetric AM
equilibrium under two conditions, one of which guarantees non-existence of a
PAM equilibrium. Economically, AM¢(H, H) — ¢(H, L)] < r¢(H, L) can be in-
terpreted as “weak complementarities when high-skilled”—if one is a high-skilled
person, the marginal gain from being matched to a high-skilled person relative to
being matched to a low-skilled person are sufficiently low. The second condition,
AMo(L, H)—¢(L, L)] < r¢(L, L), can be interpreted as limited gains from matching
with a high-skilled person if one is low-skilled himself. Taken together, I interpret
these as saying “individual skills matter more.” However, it must be noted that
it is straightforward to construct examples of environments where ¢(-, ) is super-
modular and satisfy the above two conditions.® Therefore, as in Smith (2006),
supermodularity is not enough to guarantee existence of an assortative matching,
let alone its uniqueness. In fact, Atakan et al. (2024) showed recently that if the
match function is supermodular, then an assortative matching emerges in equi-
librium in the TU environment with search frictions even with skill acquisition.
However, as per their definition, even an AM equilibrium is an example of an
assortative matching.

The proof of Proposition 4 uses the condition that |A| is sufficiently high to
obtain the monotonicity of f(-) which, eventually, establishes the uniqueness of an
asymmetric equilibrium. Without this condition, it is not difficult to numerically
construct f(-) that has multiple interior roots when C(-) is quadratic. However,
such constructions seem to require that A + A, < 0, which contradictions As-

8For instance, {¢p(H, H) = 15,¢(H, L) = 8,¢(L,H) = 2,¢(L,L) = 1,C(z) = x +c,c = 5,1 =
1, A = 1} is one such environment.
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sumption 1. Nevertheless, trying to obtain an example of multiple asymmetric
equilibria in an environment consistent with Assumption 1 is mostly a distraction.
The main purpose of much of the exercise here is to demonstrate the mechanisms
that give rise to asymmetric equilibria and illustrate their robustness in some sense
through microfounded utility functions. In this regard, if the cost function were
affine, we obtain an even sharper and complete characterization without requiring
that A be sufficiently high. We now turn to this next.

5.1. Affine costs

In this section, we specialize to affine costs. Here, we obtain sharper characteri-
zations of the asymmetric equilibria without requiring that A be sufficiently high
(in absolute value). To this end, let us specialize to affine costs: C(x) = px + ¢
for some p > 0,c > 0. Let us normalize p = 1 by scaling payoffs. Define the
following two objects that play an important role Proposition 5 that characterizes
equilibrium in this environment.

T = Ay —
. rEATT ¢
A
= A+ ALl —
- r+>\[ T An] e
. ::_riAAh_c
MY

Notice that A < 0 == 2z > x. Moreover, T > x4, > z whenever z < 1 and
A <0.

DEFINITION 1: Define the following two strategy profiles.

1. A strategy profile is a “full investment from one side (FIOS)” strategy profile
if it is given by (1, ), i.e., all the men invest in skill acquisition, while women
with a type x < x do so.

2. A strategy profile is a “no investment from one side (NIOS)” strategy profile
if it is given by (0,), i.e., no man invests in skill acquisition, while women
with a type x < T do so.

As before, we do not distinguish between the permuted strategy profiles and
label them as the same strategy profile.

PROPOSITION 5: Suppose that C(-) is affine and ¢(-,-) is submodular (A < 0).
Then, the following hold.

1. At most one symmetric AM exists.

2. Except for the knife-edge cases, there is at most one (up to permutation)
asymmetric AM equilibrium. In particular, either no asymmetric equilibrium
exists, or a FIOS is the unique asymmetric equilibrium, or a NIOS is the
unique asymmetric equilibrium.
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3. Whenever two equilibria exist, they are Pareto incomparable.
4. If x < 1,1+ TJ%\A < 0, and a symmetric equilibrium exists, then a FIOS
equilibrium exists.

5. If a NIOS equilibrium exists and
exists.

TH < 1, then a symmetric equilibrium

Proposition 5 throws light on the structure of the equilibrium set. In particular,
it shows that there can be at most two equilibria in any given environment. How-
ever, we are yet to understand when does an asymmetric equilibrium exists. More
importantly, Proposition 5 is silent on whether we can ever have an environment
featuring a unique equilibrium with that equilibrium being asymmetric. Now, we
will demonstrate a constructive approach of doing so. To this end, the following
numerical example would best illustrate the underlying mechanism.

EXAMPLE 1: Suppose that ¢ = 2,7 = X\ = 1,¢(L, L) = 1. Consider the following
two environments.

(i) ¢(H,H) =17,¢(H,L) = 6,6(L, H) = 3.
(ii) $(H,H) = 11,6(H, L) = 10, (L, H) = 6.
|

In Example 1, it is straightforward to see that in environment (i), the unique
equilibrium is symmetric and has xgy, = % On the other hand, in environment
(77), the unique equilibrium is the FIOS one with z = 0.5. In particular, the
symmetric strategy profile with zg,,, = % is not an equilibrium. Notice that the
difference between the two environments is in payoffs where at least one partner
is highly skilled. I interpret this as an increasing skill-premium. For instance,
if the market wages for a highly skilled person rise, this would bring benefits to
both the members of the household: even the ones who are themselves not highly-
skilled. Of course, a highly-skilled individual himself/herself benefits more than if
only the spouse were highly-skilled. This example is not pathological in the sense
made precise by Proposition 6. It shows that, essentially for any ¢(L, L) and any
environment with a low skill premium, we can construct an environment with a
higher skill premium (formally defined below), wherein we move from a unique

equilibrium being symmetric to it being asymmetric.

exhibits a hzgher skill premium relative to qb = <¢(H H),¢(H ,L), ¢( H), o(L,

if, 9(H,H) > ¢(H,H),6(H,L) > ¢(H,L),6(L,H) > ¢(L, H) and ¢(L,L) =
o(L, L).

PROPOSITION 6: Fiz r, A\, c. Suppose that an economy ¢ with A < 0 has (i)1 —

i (o(H, H) — ¢(L, L) > 0, (id) sizemm—sry > L and (i) 258 — c€ (0,1).
Then, the following hold:

" /\Ah —c € (0,1) is not essential to the proof but simplifies some of the casework making
the argument more transparent.
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1. The economy ¢ has a unique equilibrium with it being symmetric.

2. There exists an economy qAS which exhibits a higher skill premium relative to
¢ such that ¢ features a unique equilibrium with it being asymmetric.

While uniqueness of an asymmetric equilibrium delivered by part 2 of Propo-
sition 6 is reassuring—for it obviates the need to invoke an equilibrium selection
argument—there is no reason to view asymmetric equilibria as pathological if
multiple equilibria exist. One can construct examples where we go from a unique
equilibrium being symmetric to two equilibria—one symmetric and one NIOS—as
the skill premium goes up. More importantly, as the following section shows, such
instances can be further microfounded by viewing the household members’ prob-
lem as a non-cooperative game in the spirt of Chiappori (1988). We now turn to
this next.

6. Microfoundation from household maximiza-
tion in NTU

Thus far, we have established that when ¢(-, -) is submodular, we may have asym-
metric equilibria even when starting from a symmetric environment: neither does
the matchig technology nor do to the payoffs depend on the gender identity in
any way. However, it begs the question as to whether payoff functions that sup-
port asymmetric equilibria can arise from household optimization. To this end,
I present a household optimization problem as a non-cooperative game along the
lines of Chiappori (1988). It serves to demonstrate two things. First, it shows
how submodular payoff functions can arise from household optimization. Second,
it shows how changes in the market wages for high-skilled workers can lead society
to asymmetric equilibria creating “skill inequality” between genders.

Let us work backwards to see the idea clearly. The households’ problem is the
following. A household consists of a man m and a woman w with skills s(m) and
s(w). Wages in the market depend only on the skill and not on the gender.'” The
households decide how to split their two units of time—one unit for each member—
between labor market work and household work. Members’ allocation is a result
of a non-cooperative game. Members of the household pool their total income and
buy some consumption from it. There are also several household chores that, if
not done, bring disutility to the household. Therefore, members need to allocate
some fraction of their two units of time to the household chores. Neither member
wishes to perform these chores and would rather work in the outside labor market.
The goal of this section is to demonstrate how increases in wages for high-skilled
labor can fundamentally alter the composition of skill acquisition of choices in
equilibrium. I will illustrate this using a simple parametric example. Consider a

10 As would be clear, a gender pay gap as it exists in reality can only make it easier to construct
equilibria where women invest less in skill acquisition.
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household (m,w). Let the skill of member i be s;, The market wages for skill s is
ts. Therefore, the wage of a member ¢ ist; := t,,. If a member ¢'s allocation to the
outside labor market is e;, then the net household income is y(s, e) :=t - e, where
t:= (tm,tw) and e := (e, €,,) are the wage and effort vectors. The quality of the
household work as a result of their combined effort at home is h(e) := 2 —e; — e;.
The utility of a member ¢ is given by,

U(Siv Sjs eiae]’) = u<y(5a e)a h(e)) - 9(1 - ei)'

Essentially, the households treat both, their income and the level of household
chores as public goods, while the cost, g(-), of their work at home is private. We
assume that u; > 0,u;; < 0,up > 0,usp < 0. Moreover, the cost g(-) is assumed
to be differentiable and convex.

Members choose their allocations, (e;,e;) in a non-cooperative manner taking
the other person’s choice as given. Let us write the agents’ first order condition
(assuming interior allocation choices):

ur(y(s, e), h(e))t; —ua(y(s,e), h(e)) + g'(1—e;) =0
= w1 (y(s,e), he))(ti —t;) = g'(1 —¢;) —g'(1 — &) (1)

Therefore, if the players’ choices are interior in equilibrium, then ¢; > t; =—
e; > e; whenever ¢(-) is strictly convex.'" Thus, if the household consists of two
members with unequal skills—and therefore unequal wages—then we will have
specialization in equilibrium: the more skilled member will work more in the
professional market than the one with lower skills. This observation is at the
core of the following numerical example that illustrates how increasing wages for
high-skilled workers can give rise to asymmetric equilibria.

EXAMPLE 2: Consider a household consisting of (m,w). The utility of member i
is U(y(s, ), h(e)) = [alog(t-e)+(1—a)log(2— e, —ey)] — 5 (1—¢€;)?, where K = 8
and o = 0.6. Let t; = 2. Consider the wage for high-skills going from t;, = 3 to
tn = 6.5. The cost of acquiring skills for an agent with type x is C(x) = ¢ + =,

where ¢ = 0.25. [ ]

When two members of skill s and s’ match, they choose their effort choices
non-cooperatively. Using (1), we solve this numerically for each pair of skills
(h,h), (h,1),(l,h),(l,1) to obtain ¢(H, H),p(H, L), p(L, H), ¢(L, L) corresponding
to t, = 3 and gg(H, H),gg(H, L),gg(L, H),gg(L, L) corresponding to t, = 6.5. We
provide a detailed working of this in the appendix, but the parameters are as

1Tn fact, this also implies that if g(-) were affine, then the allocation choices cannot be interior
if the wages are unequal.
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follows:

O(H, H) = 5.3547,¢(H, L) = 5.2733, (L, H) = 4.7733,¢(L, L) = 3.4085, and
O(H, H) = 9.0660, p(H, L) = 8.9847, 6(L, H) = 8.4847, (L, L) = 3.4085.

Finally, in the environment with ¢, = 3, the unique equilibrium is symmetric
with x4y, = 0.4157. In contrast, when ¢, = 6.5, Zyy,, = 0.7257 no longer consti-
tutes an equilibrium. For this strategy profile, (AM: L-L) fails: low-skilled agents
prefer to reject and wait for the high-skilled partner rather than accepting a low-
skilled one. The unique equilibrium here is the FIOS one, with Z = 0.0407. Thus,
in response to increasing wages, we may go from a situation where 57% of each
gender were investing in acquiring high skills to one where only 4% of one gender,
say men, invest in skill acquisition, while all the women invest in skill acquisi-
tion. Thus, despite no asymmetry in the payoff or technological features of the
underlying environment, the equilibrium outcomes can exhibit stark asymmetries
between two genders as the skill premium rises.
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A. Appendix: Proofs

Proof of Proposition 1. First, let us prove that the acceptance strategies consti-
tute an equilibrium in the continuation game—the game after choosing the in-
vestment. In this game, we say that an agent type is (7,s) to mean that her
gender is v and skill is s. Then, given (7', a""), agent chooses o (H) to maximize
VY(H,a";¢",a") and a”(L) to maximize V7(L,a”;¢",a”). Let (a,¢) denote
(a"(H),a"(L), (" )yefmuw}- Consider the best-response map

T:[0,1]* x [0,1]* — [0,1]?

(o, () — | argmax V7(H, oﬂ;@/,oﬂ/), argmax V'V(L,oﬂ;@/,oﬂ/) :
a7 (H)e[0,1] a7 (L)e[0,1] e(mw)

Notice that, for any (¢, "), V7(-,a?;¢", o) continuous, quasi-concave in .
Thus, T(a, ¢) is compact, convex-valued for every fixed ¢*'. By Berge’s maximum
theorem, T'(a, ¢) is upper hemicontinuous. Therefore, by Kakutani’s fixed-point
theorem, for every ¢, 3 a fixed point, i.e., an equilibrium (a:(¢))yefm,w} in the
continuation game given the decisions that induce (.

Now, let us turn to the investment decisions. An agent of type x and gender ~y
invests if VY(H,a"";¢",a)) = C(x) = VI(L,al; (", a7). Since C(-) is increasing,
there is a cutoff x) such that agents of gender v and type above z) stay low-
skilled, while the ones below acquire high skills. Therefore, in any equilibrium,
the investment strategies are given by two cutoff types Z,,, one for each . Thus,
we use ( and X interchangeably henceforth.'? For every such strategy, we have a
set of continuation equilibria. Let

AX) ={a:aeT(a,X)}

be the set of continuation equilibria given X. Since T(-,-) is upper hemicontinuous,
A(X) is compact and upper hemicontinuous. Define,

W (o, 27, X) :=V7(H, a;2,a") = C(x") = V(L,a"; 2y, a)
W(X) :={z : k' (a,27,X) = 0 for some a € A(X), and v € {m, w}.}

Let us argue that W(-) is compact-valued and upper hemicontinuous. First, con-
sider any z,, € W()?) that converges to . Then, 3 a,, — « (by passing on to a
subsequence), such that A7(ay,, ), X) = 0 for all v and n. By continuity of h(-),
hY (e, 27, )?) = 0 for all v. Since A(-) is upper hemicontinuous, « € A()A() There-
fore, x € W()? ). Now, let us argue that W (-) is upper hemicontinuous. To this
end, let )?n —» X such that z, — x and x, € W()A(n) for each n. Therefore, da,
such that h7(cy,, 27, X,) = 0 for all v and n. Again, o, — o € A(X) due to the

2Vectors (¢™,¢%) and (Z,,, Zw) are denoted by ¢ and X respectively.
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upper hemicontinuity of A(+). Finally, by the continuity of (), h7(a, 27, X) = 0.
Therefore, x € W(X ). Therefore, by Kakutani’s fixed point theorem, 3 a fixed
point, i.e., a X, such that X, € W(X ), an equilibrium. O

A.1. Proof of Proposition 2
Proof of Proposition 2. From (PAM: Assortativity), we have that

)\:/L'\’Y/QS(Hv H)

> o(H, L
7’+A§]\,y/ ¢( ’ )

The LHS is 1ncreasmg in Z./, and hence, is maxnmzed at 1. Substituting z,, = 1,
we get that V7(H,; X) is maximized at ’\¢ ) Thus, if AM[¢(H,H) — ¢(H, L)] <

r¢(H, L), then (PAM: Assortativity) cannot be satisfied for any X establishing
the first part of the Proposition.

For the the symmetry of a PAM whenever it exists, notice that from (PAM: Invest),
we have,

— [VE(H; X) = V(L X)]-[VE (H; X) = VE(L; X)] = C(@) — C(34)
Suppose that z,, # T,,. Say, wlog, Z,, > T,,. Notice that, from (PAM: Values)

| Vi ) = v (L ) | = v R) - v (LX)

[ Newe(H, H)Y A1 —2,)8(L, L) |
B [ 4+ AT, r+ A1 — Xv) |

Nemd(H, H) A1 —2,)6(L, L) |
_[ T+ AT, B T+)\<1_)2'm) |

Let h(x) := [Mﬁi’f) — A(:;;()f’gg)m] Notice that h(-) is increasing. Therefore,

[v;n(H; X) - V(L )2)] - [v;v(H; X) - veE(L, f()] = h(Fy) — h(En) <0 if By > T
At the same time, C(Z,,) — C(Z,,) > 0 whenever Z,,, > Z,,. Therefore,
0 < C(@n) = C(34) = [VF'(H; X) = VE'(L; X)|-[VE (H; X) = VE(L; X)] <0,

a contradiction. O
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A.2. Proof of Proposition 3

Proof of Proposition 3. Let us split the analysis into three cases:

Case 1: X € (0,1)2. Suppose that Z,, # Z,. From (AM: Invest), we have,

r+ -

VI R) = V(L R) = 5 (@O ) + 6L 1)~ 00, 1)~ 0(L. 1)

& J
N~

>0

+WHJ»—maLﬂ

Therefore,

Therefore, if z,, > T,,, then LHS <0 < RHS, a contradiction.
Case 2: 7, € [0,1) and Z,, = 1. Then,

R ~ A .
VIMH; X) = V(L X) = A[wa + AL < CEn)
VY(H; X) - V¥(L; X) = )\[%mA + Ay] = C(Zw)

Therefore,

(Vi (H; X) = VL X)) = [V (H; X) = V(L X))
A A

= (@ = B = (1= Bn)A < C(m) = C(1)

However, LHS > 0 > RHS, a contradiction.
Case 3: 7,,, € (0,1] and Z,, = 0. Then,

A
T\ + ALl = C(7,,
7,,_|_>\|:xw + h] C(ﬂ;’ )
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Therefore,

(Vi (H; X) = V(L X)] = [V (H: X) = VE(L; X))

A A
= Tw— Tm)A = ———T,A>C(Z,,) —
- )\(xw Tm) - S m C(zm) — C(0)
However, LHS < 0 < RHS, a contradiction. n

A.3. Proof of Proposition 4

Proof of Proposition 4. Let us start with symmetric equilibria and argue that it
is unique whenever one exists. Suppose that X is a symmetric equilibrium. We
have the following necessary conditions for an equilibrium:

Vi(H; X) = VI(L; X) =

[AZ + Al =C(z) ifZe(0,1)
<C0) ifz=0.

r+ A

Notice that T%\[Afﬁ + Ay] — C(Z) is decreasing in Z. Therefore, exactly one of
the above three conditions will hold, i.e., if a symmetric equilibrium exists it is
unique. As for its existence, let us revisit (AM: H-L) and (AM: L-L).

VI(H: R) = 2 [0(H H) + (1~ Do(H, L)) < 9(H, L)
VAL R) = S [F(L, H) + (1~ Do(L, D] < 9(L. 1)

Notice that the LHS of both the above are increasing in . Therefore, if T%\MH JH) <
¢(H, L) and T%\Qﬁ(L,H) < ¢(L, L), then (AM: H-L) and (AM: L-L) are satisfied
for any Z. Thus, we have a unique symmetric equilibrium in this case.

Let us now turn to asymmetric equilibria. Suppose an interior asymmetric
equilibrium exists. Let X = (%, %) € (0,1)2 be an asymmetric equilibrium.
Then, (AM: Invest) yields,

A
[ZwA + Ayl = C(Z),
r+ A 2)

A .
- )\[xmA + Ay = C(Zy).

Let a := T%\A and b := T%AA;L. Then, 7,, solves
f(z):=aC Y az +b) +b—C(z) =0

where, C71(y) = 0 if y < C(0). Notice that if f(z) > (<) 0, then an agent of type
x would strictly prefer acquiring (not acquiring) high skills. If z and C~!(az + b)
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are both interior, then f(z) = 0 is a candidate equilibrium. Differentiating f(-),

~ O(C(azx + b))

f'(x) - C'(x)

Notice that C'(C~!(azx + b)) is decreasing. Therefore, if a®> = C'(1)C'(C~(b)),
then f’(-) > 0 over [0, x*] where z* is given by az* + b = C(0). Therefore, there
exists at most one 7, < x* such that f(z,,) = 0. The corresponding 7, is given
by C~1(aZ,, +b). By symmetry, if (Z,,, Z,,) solves (2), then so does (Z,, Z,,). This
contradicts the uniqueness of Z,, if Z,, # Z..

Now, let us turn to the possibility of asymmetric equilibria with one of Z,, or

Zyw € {0,1}. Let us first start with candidate equilibria of the form (Z,,, 1) where
Zm € (0,1). Then, we have,

C(ZTm)=a+Db
C(1) < aZ,, + .

However, if |a| is sufficiently large, then a + b < 0 = Z,, = 0, a contradiction.
Therefore, no such equilibria can exist for a sufficiently large |A|. The other
candidate asymmetric equilibria are of the form (Z,,,0) (and of course its mirror
image) with Z,, € (0,1). For this to be an equilibrium, we need,

C(Zp) =0
C(0) = aZ,, + b.

Notice that whenever the above is satisfied, the only relevant incentive constraint
for this to be an equilibrium is (AM: L-L). That is, say Z,, € (0,1) and Z,, = 0.
Then, a high-skilled man can only meet a low-skilled woman on path. Therefore,
we only need to check that a low-skilled woman does not want to reject a low-
skilled man and wait to be matched with a high-skilled man. Whenever this
constraint is satisfied, two asymmetric equilibria—(Z,,,0) and (0, Z,,,)—exist. [

A.4. Proof of Proposition 5

Proof of Proposition 5. Proof of 1: Recall that the interior equilibria are char-
acterized by (2):

Ao ~ ~
- )\[wa + Ay =C(Zn) =Zm + ¢,
Ao ~ ~
- )\[xmA + Ay =C(Ty) =Ty +c.
~ ~ 2 Ap— ~
Therefore, a candidate symmetric equilibrium has z,, = z,, = T_* i Ac = Tsym.-

T+
Since these are two simultaneous linear equations, the above solution is unique

23



except in the knife-edge cases. If Ty, € (0,1), then it is the unique symmetric
equilibrium if it satisfies (AM: H-L) and (AM: L-L).
Proof of 2: If an asymmetric equilibrium exists, at least one of Z,,, Z,, € {0, 1}.

Suppose that an asymmetric equilibrium exists with z,, = 1. Then, a threshold
type of woman who invests given that 7,, = x satisfies the following:

0 if 25[Az+Ap]—c<0
To(z) =91 if 2 [Az+ AL —(1+¢)>0
ri)\ [Az + Ap] — ¢ otherwise.

Simply, this type is interior if T%\[A:v +Ap]—(y+c) (as a function of y) has a root
in (0,1). Otherwise, it is Z,, = 1 if this function is nonnegative on [0, 1] and 0 if
it is nonpositive on [0, 1]. Since 25[Az 4+ A,] — (y + ¢) is strictly decreasing in y,
Zw(z) is unique for any given z. Therefore, we have only two possible asymmetric
equilibria (0, 1) and (1, z2) (again, up to permutation). By the monotonicity (in
y) of 25[Az + Ayl — (y+¢), 1 > a1 > 25 > 0."* Suppose that (1,2,) is an
equilibrium. Then,

A A
—c=
r+/\[A+Ah] ¢ O:>r+

/\[Ax1+Ah]—c>0.

Therefore, (0, z1) cannot be a best response. Similarly, if (0, z7) is an equilibrium,
then,

A A
T+A[A$1+Ah]*c<0 = s

)\[A+Ah]—(w2+c)<0

for any x5 € [0, 1]. Therefore, (1, z5) cannot be an equilibrium.

Proof of 3: The Pareto ranking of the equilibria is straightforward. Recall that
T = x. Let us compare (ZTsym, Tsym) With (1,z) first. Given that (1,z) is an
equilibrium, Ti/\[A + Ap] — ¢ < 1. Tt is easy to check that this implies that
ZTsym = 2. Therefore, men with z,, < x4, prefer the symmetric equilibrium to
the FIOS one, while all the women prefer the FIOS one (with all men investing).

Similarly, between the symmetric and NIOS equilibrium (0, Z), all the men prefer

the NIOS equilibrium (since > xgy,) while women with type z,, < z strictly
prefer the symmetric one. Since the FIOS and NIOS equilibria cannot co-exist, a
Pareto comparison between them is unnecessary.

Proof of 4: Suppose that z < 1 and a symmetric equilibrium exists. Since
A < 0, this implies that = > 0. Therefore, we need to check for (AM: H-L) and

13Since we have assumed that the two equilibria (0,21) and (1, z2) is different beyond permu-
tation, we must have x1 # 1 and x5 # 0.
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(AM: Invest) for the FIOS equilibrium. (AM: H-L) requires,

A
r+ A

Since & < w4y, and since (AM: H-L) holds for the symmetric equilibrium, we have,

A b (H H) + (1~ 20,)0(H, L)] — 6(H.L) < 0

T4+ A
Finally,
A
[ (H,H) + (1= 2)o(H, )] - 6(H. I
< 2 [ UH, H) + (1 2 )6(H, )] — 6(H, L) <0

Now, let us turn to (AM: Invest). It says,

ri\)\(gA—{—Ah)}l—{—c,

(:)ri Ah—c—kri)\A(Ti)\(A—kAh)—c)>1,
(TAAAh—c><1+ri>\A)><1—r AA)(I T/\)\A),
(7“4)—\)\ h—c>< 1_ri)\A)’ smcel%—r )\A\O,

@ri)\(AJrAh)—c:zél

Therefore, FIOS is an equilibrium.

Proof of 5: Suppose that a NIOS equilibrium exists. Recall that z > xy,,.
Therefore,

A
m[msym¢(L, H) + (1 — xsym)qﬁ(L, L)] — QS(L, L)
<2 [FO(L, ) + (1~ DO(L, 1)] - 6(L, L) <0

Therefore, (AM: L-L) is satisfied for the symmetric equilibrium.
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Also, notice that

A

H—A[$sym¢(H> H) + (1 - msym)¢(H> L)] - ¢(H7 L)
A

gr_{_—)\[msqus([% H) + (1 - xsym)gb(Lv L)] - ¢(L7 L)
A A
Apll— > sym
- h( r+)\> P
The RHS is nonpositive, while the LHS is nonnegative if T%\ < 1. Finally, since

2 [Taym®(L, H)+ (1= 2gym)$(L, L)]— (L, L) < 0 due to (AM: L-L), we have that
(AM: H-L) under (Zsym, Tsym), thereby completing the proof of the Proposition.
]

A.5. Proof of Proposition 6

Proof of Proposition 6. Let us first prove that ¢ has a unique equilibrium and that
is symmetric. To this end, let us rule out a NIOS equilibrium first. (AM: Invest)
says,

T+)\[Ai’+Ah]—C< 0

This ensures the optimality of no investment from one side of the market. This
equation rearranges to yield,

A A
(1 2 8) (a0 ) =

Moreover, we obviously need that T = ri/\Ah — ¢ € [0,1], and therefore, one

necessary condition is 1 + 25A < 0. Notice that |A] < ¢(H,H) — ¢(L, L).
Therefore,

A>1- A

Az —(¢(H,H) = (L, L)) = 1+-—— A

(6(H, H) — 6(L, L)) > 0.

Therefore, (AM: Invest) cannot be satisfied for the NIOS equilibrium.
Now, let us turn to a FIOS equilibrium. (AM: Invest) for this equilibrium is,

A
r+ A

[Az+ Al =1+4c¢
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Recall that z = T%\(A + A}p) — c. Substituting the above, we get,

A A A

A, — A A+Ay)—c) =1,
T+ A h C+r+)\ (7"+)\( +An) C)

A A A A
A A=) 1 A)=(1- A) (1 A
(r—i—)\ 4 C>< LY ) ( "+ A )( LY )

A A, — >(1-— A A ince 1 + A>0
rrAr )7 AT ST ’

A
—c=x>=>
(:)r—i—)\(A—i_Ah) c=z>1

However, since =2 (A + Ay) = 2 (¢(H, H) — ¢(L, H)) < 1, the above cannot be

T+ r+A
satisfied. Therefore, FIOS is not an equilibrium.

Finally, let us turn to proving that a symmetric equilibrium exists. First, by
assumption Zy, € (0,1). Therefore, we need to verify (AM: H-L) and (AM: L-L)
for this strategy profile. Those can be written as,

Axsym((b(H? H) - ¢(H7 L)) < T¢(H, L)
Ay (¢(L, H) — ¢(L, L)) < r¢(L, L)

However, max{¢(H, H)—¢(H,L),p(L,H)—¢(L, L)} < ¢(H,H)—¢(L, L). There-
fore,

N0, H) — 0(H, 1)) < Neaym (9(H, H) — 0(L, 1)) < “2227 < o1, 1)
Neoum(8(L, H) = 6(L, 1)) < Mooy (6(H, H) = 6(L, 1)) < “ < (L, 1)

where the last inequality for the above uses the fact that ¢(H, L) = ¢(L,L) = 1.
Therefore, (AM: H-L) and (AM: L-L) are satisfied by (Zsym, Tsym ), i-€., there exists
a unique equilibium and is symmetric. This completes the proof of the first part
of the proposition.

Now, let us turn to constructing $ that exhibits a higher skill premium relative
to ¢ and admits a unique equilibrium, with it being asymmetric. In particular, we

A~ N A~

will choose ¢(H, H),»(H, L), (L, H) larger than ¢(H, H), p(H, L), p(L, H) that
admit a FIOS equilibrium, and it would be a unique equilibrium. Let us rewrite
the constraints of a FIOS equilibrium.

A
- )\(A + Ay) —ce(0,1).
A
T+)\(§A—|—Ah) >1+c
)\ ~ ~ ~
A (wd(H, H) + (1~ )3(H, 1)) <B(H, 1)
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Of the three constraints above, our construction would involve gg(H JH) ~ ngS(H ,L).
Therefore, the third constraint would be easily satisfied and hence, it can be
ignored.

Finally, for uniqueness, we also need to ensure that (2sym, Zsym) is not an equi-
librium. Out of the two IC constraints, the particular one we would constructively
violate is (AM: L-L):

5 @am (L H) + (1= 2y B(L, L)) < 6L, L)

The above constraint would be violated if $(L, H) is sufficiently large.

To this end, we will choose qg(L,H) = a sufficiently larger than qg(L,L) =
¢(L,L) =1and ¢(H,H) ~ ¢(H,L) =b > a. Then, A ~ —(a—1), A, ~ b— 1.
First, as before, (AM: Invest) rearranges to,

(:)(riAAh_C)<1+riAA>>(1_riAA>< TiA) ¥

Therefore it is necessary that 1 + T%\A < 0. Asat, |A] T, and therefore,
T+/\A |- In particular, if we choose a = ¢(H,H), then 1 + —a > 0 by

assumption. Thus, gg(L,H) = a > ¢(H,H). We also need to ensure that z =
k(A + Ap) —c = k(b —a) — ¢ to be larger than 1. Given any a, this puts an
upper bound on b. So long as this upper bound is satisfied, we have also ensured
that that (3) is satisfied since all it requires, subject to having 1 + T%\A <0is
that z < 1 which we have ensured regardless by choosing a sufficiently high value
of a and assuming that gg(H, H) ~ $(H, L). Choosing a b high enough so that
z € (0,1) would therefore guarantee that a FIOS equilibrium exists. However, for
its uniqueness, we also need to choose (a,b) to violate (AM: L-L). That is, we
need to choose (a,b) so that,

1 T+)\A (¢(L>H) - ¢(L7L)) > A
(b—1) - r
T+)\ r
1+ T+A(a—1)(a*1) X

Since LHS is increasing in a, 3 a sufficiently large so that the above inequality is
satisfied. Therefore, (2sym, Zsym) is not an equilibrium for such an a. Subsequently,
by choosing b so that z € (0, 1) we complete the construction. O
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