# Costly Screening and Categorical Inequality

Mogens Fosgerau Rajiv Sethi Jörgen Weibull

ThReD Conference, October 2020

# **Categorical Inequality**

Inequality in (income) distributions among social groups or categories

Examples: gender, race, ethnicity, religion

Theories of persistent categorical inequality

- Self-fulfilling negative stereotypes (Arrow)
- Differential observability of market-valued traits (Phelps)
- Prejudice (Becker)
- Segregation and social capital (Loury)

How do these mechanisms interact with costly information acquisition?

# **Model Overview**

# Candidates

- Candidates may be qualified or unqualified, depending on effort and chance
- Cost of effort may vary across candidates; cost distributions may vary across groups
- Candidates choose efforts based on cost and anticipated earnings in post-screening market

### Screener

- Screener designs category-contingent tests, greater precision comes at greater cost
- Cost based on Bregman information (includes Shannon information as special case)
- Reward for qualified passing candidates, penalty for unqualified passing candidates
- Screening intensity based on (category-contingent) qualification rate and information cost

# Post-screening market

• Earnings based on posterior beliefs about qualification conditional on screening outcome

# **Model Overview**

Candidates

- Candidates may be qualified or unqualified, depending on effort and chance
- Cost of effort may vary across candidates; cost distributions may vary across groups
- Candidates choose efforts based on cost and anticipated earnings in post-screening market

### Screener

- Screener designs category-contingent tests, greater precision comes at greater cost
- Cost based on Bregman information (includes Shannon information as special case)
- Reward for qualified passing candidates, penalty for unqualified passing candidates
- Screening intensity based on (category-contingent) qualification rate and information cost

# Post-screening market

• Earnings based on posterior beliefs about qualification conditional on screening outcome

# **Model Overview**

Candidates

- Candidates may be qualified or unqualified, depending on effort and chance
- Cost of effort may vary across candidates; cost distributions may vary across groups
- Candidates choose efforts based on cost and anticipated earnings in post-screening market

Screener

- Screener designs category-contingent tests, greater precision comes at greater cost
- Cost based on Bregman information (includes Shannon information as special case)
- Reward for qualified passing candidates, penalty for unqualified passing candidates
- Screening intensity based on (category-contingent) qualification rate and information cost

### Post-screening market

• Earnings based on posterior beliefs about qualification conditional on screening outcome

### Main Results

## **Baseline Model**

- There is a screening interval of prior beliefs within which active screening occurs
- Posteriors correspond to endpoints of screening interval (independent of priors)
- Candidate efforts are increasing in screening intensity and earnings differential
- One passive and (possibly) two active equilibria, passive and high active are stable

# Categorical Inequality

- $\bullet$  Higher screening cost  $\rightarrow$  smaller difference in conditional posteriors  $\rightarrow$  lower investment
- $\bullet~\mathsf{Prejudice} \to \mathsf{upward}$  shift in conditional posteriors, ambiguous effect on investment
- $\bullet$  Prejudice (higher penalty and Shannon information)  $\rightarrow$  higher investment
- $\bullet$  Less favorable cost distribution  $\rightarrow$  lower investment, no change in conditional posteriors

### Main Results

Baseline Model

- There is a screening interval of prior beliefs within which active screening occurs
- Posteriors correspond to endpoints of screening interval (independent of priors)
- Candidate efforts are increasing in screening intensity and earnings differential
- One passive and (possibly) two active equilibria, passive and high active are stable

# Categorical Inequality

- $\bullet\,$  Higher screening cost  $\rightarrow$  smaller difference in conditional posteriors  $\rightarrow\,$  lower investment
- $\bullet~\mathsf{Prejudice} \to \mathsf{upward}$  shift in conditional posteriors, ambiguous effect on investment
- $\bullet$  Prejudice (higher penalty and Shannon information)  $\rightarrow$  higher investment
- ullet Less favorable cost distribution  $\rightarrow$  lower investment, no change in conditional posteriors

### Candidates

### Characteristics and Categories

- Continuum of candidates  $i \in [0, 1]$
- Each has characteristic  $\theta \in \Theta$  and belongs to category  $\kappa \in K$ ; both sets finite
- $\theta$  is private information,  $\kappa$  observable without cost or error
- Characteristic distribution in category  $\kappa$  is  $\mu_{\kappa}$

Investment and Qualification

- All candidates initially unqualified; may move to the qualified state by investment of effort
- Let  $S_i = 1$  if candidate *i* attains qualified state,  $S_i = 0$  if not, state unobserved
- Probability that candidate who invests  $x_i \ge 0$ , achieves qualified state is  $F(x_i)$
- F' > 0, F(0) = 0,  $\lim_{x\to\infty} F(x) = 1$ , f = F' bounded and unimodal
- Cost of effort is  $\theta x_i$

# Candidates

Characteristics and Categories

- Continuum of candidates  $i \in [0, 1]$
- Each has characteristic  $\theta \in \Theta$  and belongs to category  $\kappa \in K$ ; both sets finite
- $\theta$  is private information,  $\kappa$  observable without cost or error
- Characteristic distribution in category  $\kappa$  is  $\mu_{\kappa}$

#### Investment and Qualification

- All candidates initially unqualified; may move to the qualified state by investment of effort
- Let  $S_i = 1$  if candidate *i* attains qualified state,  $S_i = 0$  if not, state unobserved
- Probability that candidate who invests  $x_i \ge 0$ , achieves qualified state is  $F(x_i)$
- F' > 0, F(0) = 0,  $\lim_{x\to\infty} F(x) = 1$ , f = F' bounded and unimodal
- Cost of effort is  $\theta x_i$

# Screening

- Each candidate is examined by screener and accepted  $(Z_i = 1)$  or rejected  $(Z_i = 0)$
- Utility of candidate with characteristic  $\theta$  who exerts  $x_i \ge 0$  is

$$U(x_i, Z_i, \theta) = Z_i v_1 + (1 - Z_i) v_0 - \theta x_i$$

where  $v_1$  and  $v_0$  are endogenous earnings obtained by passing and failing candidates

# Screening

- Each candidate is examined by screener and accepted  $(Z_i = 1)$  or rejected  $(Z_i = 0)$
- Utility of candidate with characteristic  $\theta$  who exerts  $x_i \ge 0$  is

$$U(x_i, Z_i, \theta) = Z_i v_1 + (1 - Z_i) v_0 - \theta x_i$$

where  $v_1$  and  $v_0$  are endogenous earnings obtained by passing and failing candidates

- Screener reward  $\beta > 0$  for qualified, penalty  $\gamma > 0$  for unqualified candidates accepted
- Cannot observe state but can calibrate test to adjust conditional acceptance rates
- Acceptance rates are  $y_0 = \Pr[Z = 1 \mid S = 0]$  and  $y_1 = \Pr[Z = 1 \mid S = 1])$
- These decision variables can be modified by costly information acquisition
- Screening intensity based on prior *p* (category-coningent, correct in equilibrium)

#### **Conditional Posteriors**

Overall acceptance rate is

$$y = py_1 + (1-p)y_0$$

Conditional on acceptance, posterior probability that candidate is qualified

$$q_1 = \Pr[S = 1 \mid Z = 1] = \frac{py_1}{y}.$$

Conditional upon rejection, posterior probability that candidate is qualified is

$$q_0 = \Pr[S = 1 \mid Z = 0] = \frac{p(1 - y_1)}{1 - y}.$$

Screener's expected payoff is

$$\beta q_1 y - \gamma (1-q_1) y - I$$

where *I* is the information cost

#### **Conditional Posteriors**

Overall acceptance rate is

$$y = py_1 + (1-p)y_0$$

Conditional on acceptance, posterior probability that candidate is qualified

$$q_1 = \Pr[S = 1 \mid Z = 1] = \frac{py_1}{y}.$$

Conditional upon rejection, posterior probability that candidate is qualified is

$$q_0 = \Pr[S = 1 \mid Z = 0] = \frac{p(1 - y_1)}{1 - y}.$$

Screener's expected payoff is

$$\beta q_1 y - \gamma (1-q_1) y - I$$

where *I* is the information cost

### **Information Cost**

The Bregman information of random posterior  $q_Z$ , given prior p is

$$I = \mathbb{E}\left[G(q_Z)\right] - G(\mathbb{E}\left[q_Z\right]) = yG(q_1) + (1-y)G(q_0) - G(p)$$

where  $G:[0,1] \to \mathbb{R}$  is twice differentiable, strictly convex, derivative infinite at the boundary

### **Information Cost**

The Bregman information of random posterior  $q_Z$ , given prior p is

$$I = \mathbb{E}\left[G(q_Z)\right] - G(\mathbb{E}\left[q_Z\right]) = yG(q_1) + (1-y)G(q_0) - G(p)$$

where  $G : [0,1] \rightarrow \mathbb{R}$  is twice differentiable, strictly convex, derivative infinite at the boundary

Special case is Shannon mutual information, where *G* is negative entropy:

$$G(q) = q \ln q + (1-q) \ln(1-q)$$

If screener chooses not to acquire information,  $q_0 = q_1 = p$  and information cost is zero

# Equilibrium

For each category

- Screener sets screening intensity  $r = y_1 y_0$  based on beliefs about qualification rate p
- Candidates choose effort levels x<sub>i</sub> based on screening intensity and private cost
- This determines aggregate qualification rate p for each category
- Beliefs about (p, r) are correct for all categories in equilibrium
- Candidate payoffs in post-screening markets equal conditional posteriors

$$v_0=q_0, \quad v_i=q_1$$

Focus on best stable equilibrium for each group

### **Optimal Screening Interval and Conditional Posteriors**

There exists a nonempty interval  $[p_{\min}, p_{\max}]$  such that screener rejects all candidates when  $p \leq p_{\min}$  and accepts all when  $p \geq p_{\max}$ 

Posterior beliefs about those accepted and rejected are constant across screening interval:

$$\hat{q}_0({m p})={m p}_{\mathsf{min}}$$
,  $\hat{q}_1({m p})={m p}_{\mathsf{max}}$ 

 $\text{ if } p \in (p_{\min}, p_{\max}) \\$ 

On the screening interval  $\hat{y}_0(p)$  is strictly convex and  $\hat{y}_1(p)$  is strictly concave

Screening intensity,  $\hat{r}(p)$  is continuous and strictly concave on active screening interval





Candidate payoffs in post-screening markets based on conditional posteriors

 $v_0 = p_{\min}$  and  $v_1 = p_{\max}$ 

Candidate *i* with characteristic  $\theta$  who makes effort  $x_i \ge 0$  obtains:

 $\mathbb{E}\left[U(x, Z_i, \theta)\right] = F(x) \cdot \left[y_1 v_1 + (1 - y_1) v_0\right] + (1 - F(x)) \cdot \left[y_0 v_1 + (1 - y_0) v_0\right] - \theta x.$ 

Candidate payoffs in post-screening markets based on conditional posteriors

 $v_0 = p_{\min}$  and  $v_1 = p_{\max}$ 

Candidate *i* with characteristic  $\theta$  who makes effort  $x_i \ge 0$  obtains:

 $\mathbb{E}\left[U(x, Z_i, \theta)\right] = F(x) \cdot \left[y_1 v_1 + (1 - y_1) v_0\right] + (1 - F(x)) \cdot \left[y_0 v_1 + (1 - y_0) v_0\right] - \theta x.$ 

Candidate payoffs in post-screening markets based on conditional posteriors

 $v_0 = p_{\min}$  and  $v_1 = p_{\max}$ 

Candidate *i* with characteristic  $\theta$  who makes effort  $x_i \ge 0$  obtains:

 $\mathbb{E}\left[U(x, Z_i, \theta)\right] = F(x) \cdot \left[y_1 v_1 + (1 - y_1) v_0\right] + (1 - F(x)) \cdot \left[y_0 v_1 + (1 - y_0) v_0\right] - \frac{\theta x}{\theta x}.$ 

Candidate payoffs in post-screening markets based on conditional posteriors

 $v_0 = p_{\min}$  and  $v_1 = p_{\max}$ 

Candidate *i* with characteristic  $\theta$  who makes effort  $x_i \ge 0$  obtains:

$$\mathbb{E}\left[U(x, Z_i, \theta)\right] = F(x) \cdot \left[y_1 v_1 + (1 - y_1) v_0\right] + (1 - F(x)) \cdot \left[y_0 v_1 + (1 - y_0) v_0\right] - \theta x.$$

For p outside screening interval all optimal efforts are zero

For p within screening interval, optimal effort,  $\hat{x}_{\theta}$ , is either zero or is increasing in screening intensity r and earnings differential  $v_1 - v_0$ 



# Equilibrium

- There exists a passive equilibrium with no investment, no screening, full rejection
- There may also exist active equilibria with positive investment and screening intensity

### Equilibrium

- There exists a passive equilibrium with no investment, no screening, full rejection
- There may also exist active equilibria with positive investment and screening intensity

### Stability

Suppose that system (p, r) is subject to a dynamic

$$\dot{p} = \phi(\hat{p}(r) - p)$$
$$\dot{r} = \psi(\hat{r}(p) - r)$$

where  $\phi\left(0
ight)=\psi\left(0
ight)=$  0,  $\phi'$ ,  $\psi'\geq$  0 and  $\phi'\left(0
ight)$ ,  $\psi'\left(0
ight)>$  0.

Then passive equilibrium is asymptotically stable, the low active equilibrium is unstable, and the high active equilibrium is asymptotically stable



### **Categorical Inequality**

Consider two groups, A, B such that

- Screener bonuses and penalties  $(\beta_A, \gamma_A)$  and  $(\beta_B, \gamma_B)$
- Cost distributions  $\mu_A$  and  $\mu_B$  of the individual characteristics  $\theta$
- Response curves for the two groups are given by  $(\hat{p}_A, \hat{r}_A)$  and  $(\hat{p}_B, \hat{r}_B)$
- Screening intervals are denoted  $(p_{A\min}, p_{A\max})$  and  $(p_{B\min}, p_{B\max})$  respectively
- Qualification rates at stable active equilibrium  $p_A^*$  and  $p_B^*$

No capacity constraints, constant unit cost of information, so groups can be treated in isolation

# **Differential Screening Cost**

Group A is costlier to screen, groups identical in all other respects

- faces a smaller screening interval:  $p_{A \max} < p_{B \max}$  and  $p_{A \min} > p_{B \min}$
- faces more pessimistic beliefs conditional on passing, more optimistic conditional on failing
- faces smaller earnings differential
- invests at lower rates for each value of screening intensity
- invests at lower rates in the stable active equilibrium:  $p_A^* < p_B^*$



# Prejudice (Lower Rewards)

Suppose  $\beta_A < \beta_B$ , groups otherwise identical

- faces a more demanding screening interval  $p_{A\min} > p_{B\min}$  and  $p_{A\max} > p_{B\max}$
- faces more optimistic beliefs conditional on both passing and failing
- In Shannon case, invests at lower rates for each value of screening intensity
- Effect on equilibrium investment rates is ambiguous



# **Prejudice (Higher Penalty)**

Suppose  $\gamma_A > \gamma_B$ , groups otherwise identical

- faces a more demanding screening interval  $p_{A\min} > p_{B\min}$  and  $p_{A\max} > p_{B\max}$
- faces more optimistic beliefs conditional on both passing and failing
- In Shannon case, invests at higher rates for each value of screening intensity
- In Shannon case invests at higher rates in the stable active equilibrium:  $p_A^* > p_B^*$



# **Social Capital**

Suppose  $\mu_A$  first-order stochastically dominates the distribution  $\mu_B$ 

- invests at lower rates for each value of screening intensity
- invests at lower rates in the stable active equilibrium:  $p_A^* < p_B^*$
- faces the same screening interval:  $(p_{A\min}, p_{A\max}) = (p_{B\min}, p_{B\max})$
- No difference in posteriors conditional on passing or failing
- Screening intensity adjusts to eliminate negative stereotype



# Conclusions

- Allowing for endogenous information acquisition leads to some new insights
- Mechanisms generating categorical inequality have implications for screening intensity
- Affect equilibrium investment rates and conditional posteriors
- Negative stereotypes can be worsened or mitigated, depending on nature of disadvantage
- Extensions: cross-group spillovers, affirmative action, post-screening discrimination